Asee peer logo
Displaying results 61 - 90 of 135 in total
Conference Session
K-12 & Pre-College Engineering Division: Sustainability and Interdisciplinary Practices in K-12 Engineering Education Curriculum
Collection
2016 ASEE Annual Conference & Exposition
Authors
Skot Wiedmann, University of Illinois, Urbana-Champaign
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
with theircurriculum10.Pedagogical GoalsThe touch synthesizer workshop began as a means to fill a gap in the existing UniversityElectrical and Computer Education and to enrich student experiences beyond the classroom byteaching surface mount soldering techniques. By introducing electronic assembly, analysis, andrework, in the context of making sound and music, we aimed to inspire students to connect theirinterests, hobbies, and passions with their chosen field of study, even if they are traditionallyisolated practices11. We hoped to draw a diverse audience that reflected the varying perspectiveson these practices, and encouraged high school outreach and pre-college involvement. Wewanted participants to gain exposure to manufacturing processes
Conference Session
K-12 & Pre-College Engineering Division: Fundamental: K-12 Student Beliefs, Motivation, and Self Efficacy
Collection
2016 ASEE Annual Conference & Exposition
Authors
Brenda Capobianco, Purdue University, West Lafayette; James D. Lehman, Purdue University; Qiming Huang, Purdue University; Chell Nyquist, Purdue University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
- Pre-/post- with students’ science learning? based Classroom Knowledge Tests Observational RubricTeacher participant dataInterviews. Semi-structured interviews (n=20 total) were conducted at the beginning and end ofthe school year to identify and characterize teachers’ perceptions of engineering design,expectations and reflections of task implementation, and challenges they experienced throughoutthe year. Analysis and interpretation of teacher interviews involved the use of grounded theory.18During this process, members of the research team focused on identifying indicators of conceptsand categories that fit the data. Repeatedly
Conference Session
Pre-College: Working with Teachers to Improve K-12 Engineering Education
Collection
2017 ASEE Annual Conference & Exposition
Authors
Katey Shirey, University of Maryland, College Park
Tagged Divisions
Pre-College Engineering Education Division
tools freed up Leslie in the lab space; Leslie didn’t haveto run from group to group assisting each group individually. Her attention to the whole roomand the larger task of inquiry overall could be wider than if she were narrowed in on helpingindividual groups.Leslie held a constructivist stance in inquiry instruction. I believe that Leslie desired studentswork with data from empirical observation and withheld giving away the steps because Lesliethinks learning happens when students construct understandings from experiences,communication, and reflection, indicating a constructivist learning stance. A constructivist stanceis made up of many smaller reasoning resources including perhaps, “knowledge is constructednot given” and others. Leslie
Conference Session
Pre-College: Fundamental Research in Engineering Education (2)
Collection
2017 ASEE Annual Conference & Exposition
Authors
Brian Hartman, Walla Walla University; Randy L. Bell, Oregon State University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
as they apply to K-12 education. In 2013, the Next Generation Science Standards reflected the growing interest in K-12 engineering by integrating it with the science curriculum. In contrast to the prior standards, the NGSS explicitly included engineering as a foundational component of the curriculum, with engineering concepts included in the requirements for each grade level. In fact, the final NGSS document body included over three hundred uses of the word engineering. Taking advantage of recent research into science learning, the standards also propose a new view of teaching science. Whereas the earlier standards heavily emphasized science content knowledge, the new standards took a more holistic view of science. Science education
Conference Session
Pre-College: Evaluation
Collection
2017 ASEE Annual Conference & Exposition
Authors
Reagan Curtis, West Virginia University; Johnna Bolyard, West Virginia University; Darran Cairns, West Virginia University; David Luke Loomis, West Virginia University; Sera Mathew; Kelly Leigh Watts, Regional Educaion Service Agency 3
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
“using mathematics andcomputational thinking”, as well as crosscutting concepts focused on “systems and systemmodels” 11. Engineering design projects provide extensive opportunities to engage in practicescommon to both the CSSM and Framework: defining problems, constructing explanations,developing models, using appropriate tools and attending to precision.Engineering design done well requires an unfamiliar role for many teachers. Teachers must shiftfrom evaluative to interpretive perspectives while moving away from guiding students to correctanswers and toward emphasizing exploration and engagement 12. Teaching practices must fosterstudent reflection on their own reasoning and interpretation of problems 13. Rather than warningstudents when they
Conference Session
Pre-College: Teacher Impact on Student Mastery
Collection
2017 ASEE Annual Conference & Exposition
Authors
Julie Steimle, University of Cincinnati; Anant R. Kukreti, University of Cincinnati; Helen Meyer, University of Cincinnati
Tagged Divisions
Pre-College Engineering Education Division
force in an authentic way. Students carry many misconceptions about how things interact and move, and this (unit) will provide authentic opportunities to correct these (misconceptions).However, in her reflection on the unit, she did note that “the length of time needed for the designproject required significantly more time (over two weeks due to snow days) than is typicallyneeded to cover the topic of friction: 2-3 days.” Teachers continually need to assess whetheradditional time spent on a topic, even if student understanding increases, is worth the investment. Another middle school science teacher taught her students the properties of rocks, minerals,and soils by having them design eco-friendly paint by grinding rocks and
Conference Session
Pre-college Engineering Education Division Poster Session
Collection
2017 ASEE Annual Conference & Exposition
Authors
Jalil Kianfar P.E., Saint Louis University; Adaline M. Buerck, Saint Louis University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
location and trajectory of vehicles. Studentsuse these models to calculate the movement of two vehicles over a 5-second period. It isassumed that ∆𝑡𝑡 is 1 second. The instructor emphasizes that animations and transportationmeasures of effectiveness obtained from traffic simulation models are developed according to carfollowing models.Transportation measures of effectiveness (MOEs): In the next step, the instructor and studentsdiscuss indexes that could be used to quantify the quality of travel experienced by road users.Students are asked to reflect on their personal daily travel experiences and mention when theythink the transportation system is or is not working well for them. Through guided discussions,students typically list indexes such as
Conference Session
K-12 & Pre-College Engineering Division: Research-to-Practice: Principles of K-12 Engineering Education and Practice
Collection
2016 ASEE Annual Conference & Exposition
Authors
Julie Steimle, University of Cincinnati; Anant R. Kukreti, University of Cincinnati; Catherine Maltbie, University of Cincinnati
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
, completed two of her four professional development requirementsby presenting at High Schools That Work and in a department meeting at her school, Felicity-Franklin. However, she also chose to provide one-on-one mentoring to a fellow teacher from herschool by meeting with her and explaining the pedagogies associated with the program. Thatsame teacher, BF, decided to apply to the program, was accepted, and now serves as an advocateof program pedagogies throughout Felicity-Franklin.BF made a tremendous impact on one particular science teacher in her rural school throughprofessional development. She mentored “Holly” through the process of creating andimplementing two engineering design challenge units and reflected upon the experience: My first
Conference Session
K-12 & Pre-College Engineering Division: Professional Development for Students and Teachers
Collection
2016 ASEE Annual Conference & Exposition
Authors
Matthew Moorhead, New York University; Colin Hennessy Elliott, New York University; Jennifer B. Listman, New York University; Catherine E. Milne, New York University; Vikram Kapila, New York University
Tagged Divisions
Pre-College Engineering Education Division
with the help of teachers to address problems they identified. Figure 1: Final, collaboratively designed, activity-bot.Besides the individual lesson refinement, the structure of the PD was adapted to increase teacherinvolvement in the construction of the lessons. With a few examples of fully developed lessonsthe teachers were involved in cognitive apprenticeship and, through reflection, were able to seehow an expert would create lessons using the robotic kit.31,32 The important consideration wasthat the teachers worked through all three units from a novice’s perspective of integratingrobotics activities into the development of a lesson.Week 2At the beginning of the second week, the teachers were introduced to DBR and given
Conference Session
K-12 & Pre-College Engineering Division Poster Session: Works in Progress
Collection
2016 ASEE Annual Conference & Exposition
Authors
Gina Navoa Svarovsky, University of Notre Dame; Marjorie B. Bequette, Science Museum of Minnesota; Lauren Causey
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
Movement isdefined by the Maker Media brand may be excluding the culturally-embedded making practicesfound in communities of color. Early analysis of focus group and interview data with membersof communities of color reflect this lack of alignment between their perceptions of making intheir every day lives and what is commonly portrayed as Making within the Maker community.Using Gee’s theory on Discourses, it is possible that the branding of Making by MAKEMagazine results in a limited definition of making focused heavily on electronics andmechanics. We argue that a return to a more inclusive view of making – one characterized bycreative, innovative, and generative processes found within all cultures, and values andhighlights examples of innovation
Conference Session
Pre-College: Teacher Impact on Student Mastery
Collection
2017 ASEE Annual Conference & Exposition
Authors
Kerry Dixon, Ohio State University; Deborah M. Grzybowski, Ohio State University; Jenny Vi Le, Ohio State University; Carlos E. Castro, Ohio State University; Madith Barton, Ohio State University; Olivia R. Richardson, Ohio State University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
. FindingsAnna’s View: Designing Possibilities and Confronting Constraints 8 Conversations with Anna, whether they took place in curriculum planningsessions or in the context of reflecting on the smART project, were characterized byoverflowing ideas. She often responded to planning questions by offering new ideas, andwhen students undertook many of the art-infused engineering projects, she would proposenew, related projects or ask for advice on how she could implement similar activities inher science classroom. She was often interested in how origami, an art form with whichshe had prior experience, could be used to teach other content, such as mathematics
Conference Session
Pre-College: Perceptions and Attitudes on the Pathway to Engineering (1)
Collection
2017 ASEE Annual Conference & Exposition
Authors
Tony McClary, New Mexico State University, College of Engineering; Patricia A. Sullivan, New Mexico State University; Steven J. Stochaj, New Mexico State University; Luis Antonio Vazquez Ph.D., New Mexico State University; Karen Trujillo, New Mexico State University ; John Kulpa, New Mexico State University; Germain Degardin, New Mexico State University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
. – 9:00 p.m. Reflective/Down Time 9:00 p.m. Lights out/ Bed TimeCurriculumThe NM PREP high school curriculum was designed by the Engineering New Mexico ResourceNetwork (ENGR-NM) staff utilizing feedback provided by the participating engineering facultymembers. The ENGR-NM leadership team met with members of the engineering faculty toidentify activities and to discuss the science behind them as a means of introducing students tothe various engineering disciplines offered by the college. Each department provided an activitythey thought would best engage students, while providing them with some of the technical skillsneeded to be successful future engineering students. A dry-run of the activities
Conference Session
Pre-college: Summer Experiences for Students and Teachers (1)
Collection
2017 ASEE Annual Conference & Exposition
Authors
Sharnnia Artis, University of California, Irvine; Gregory N. Washington, University of California, Irvine
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
15-311. Arlington, VA. Available at http://www.nsf.gov/statistics/wmpd/. Accessed April 1, 2016.7. Valencia, R. (2015). Students of Color and the Achievement Gap: Systemic Challenges, Systemic Transformations. New York, NY: Routledge, Taylor & Francis Group.8. The STEM Connector, 2012-2013, Annual Report: “Where are the STEM Students” Executive Summary, pg.12. This number (8.65 million) does not reflect people in who are “self-employed” in STEM fields. If “self-employed” is included, the number of people employed in STEM fields in 2012 is 14.9 million, and is projected to reach 15.68 million by 2018.9. Jolly, E.J., Campbell, P.B., & Perlman, L. 2004. Engagement, Capacity and Continuity: A Trilogy for Student
Conference Session
Pre-College: Engineering Undergraduates as Teachers
Collection
2017 ASEE Annual Conference & Exposition
Authors
Ulan Dakeev, Texas A&M University, Kingsville; Muhittin Yilmaz, Texas A&M University, Kingsville; Faruk Yildiz, Sam Houston State University; Shah Alam P.E., Texas A&M University, Kingsville; Farzin Heidari, Texas A&M University, Kingsville
Tagged Divisions
Pre-College Engineering Education Division
all thirty-eight students at the beginning and at the endof the workshop activity to collect pre-and post-data. The survey was prepared to reflect therelevant previous studies and to understand the workshop impact with respect to its goal andincluded a number of questions to indicate whether the activity improved student technical andskill learning (high school students), mentorship confidence (undergraduates), and ability toteach 3D modeling class independently (graduates). A total of 38 students participated in thestudy (22 males and 16 females). The participants indicated that none of the high school norundergraduate students were exposed to 3D printing previously, and only 1 high school studentwas familiar with 3D modeling concepts. At
Conference Session
K-12 & Pre-College Engineering Division: Diversity Issues in K-12 and Pre-College Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Brynn Kasper, University of St. Thomas; Alison Haugh Nowariak, University of St. Thomas; Noah Kasper, University of St. Thomas; Brett D. Gunderson, University of St. Thomas; AnnMarie Polsenberg Thomas, University of St. Thomas; Deborah Besser P.E., University of St. Thomas
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
into the Metro Deaf School science club made use of SquishyCircuits ©, MaKey MaKey ©, and incorporated other electronic design challenges such as an e-textiles workshop. The team was able to reflect on the initial Creative Circuitry program and itsreception with the middle school students in order to build more engaging programs in the future.A fall 2014 program was also run and involved a concentration on individual engineeringdisciplines with each week focusing on a different discipline. This curriculum was built tointroduce and expose the deaf students to six different disciplines in enjoyable ways. During thedevelopment of this after-school program, several goals were built into each module of theengineering curriculum. The main goal was
Conference Session
K-12 & Pre-College Engineering Division: Fundemental and Evaluation: Embedded Programs in Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Ibrahim Halil Yeter, Texas Tech University; Hansel Burley, Texas Tech University; Terrance Denard Youngblood, Texas Tech University; Casey Michael Williams, Texas Tech University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
materials in a timely manner, fabricating parts, strengtheningteamwork and communication skills, managing funding/schedules and developing rocketscapable of stable flight. Once a school achieves success at the Tsiolkovsky step, it moves to theOberth step. At this step, the curriculum focuses on incorporating all the knowledge andexperience from the first year, while students work toward achieving a greater understanding ofmass fractions and aerodynamic loads. Students also develop skills needed to design andconstruct the rocket vehicle. The curriculum at the Goddard step focuses on understanding whatis needed to develop high altitude flight time as well as reflecting on the entire process and thelearning it took to get there. SystemsGo charges
Conference Session
K-12 & Pre-College Engineering Division: Outreach in K12 through College Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Tony Lee Kerzmann, Robert Morris University; John Howard Walker, University of Pittsburgh; David V.P. Sanchez, University of Pittsburgh
Tagged Divisions
Pre-College Engineering Education Division
ideally should have a greater interest in the topics covered. 4) Enthusiasm: Enthusiasm is often positively correlated to attitude and motivation however; the former is often better defined as enjoyment while the latter reflects more on their reasoning and behaviors. 5) Creativity: This item is more abstract and its assessment will be discussed in another section. However, the intended gains in this area include develop a greater sense to design something unique and original. 6) Self-Efficacy: Self-efficacy has many of the above focus areas wrapped into it, but with a stronger connection to the students’ confidence and anxiety to take on and complete specific objectives in the field of sustainability
Conference Session
K-12 & Pre-College Engineering Division: Student-Centered Activities and Maker Spaces in Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
James Larson, Arizona State University; Micah Lande, Arizona State University, Polytechnic campus; Shawn S. Jordan, Arizona State University, Polytechnic campus
Tagged Divisions
Pre-College Engineering Education Division
skills anddispositions of engineers are as important to their success as the knowledge that comes withyears of study of math and science, and the frustrations along the way. Stevens describes theengineering educational experience as one of a “meritocracy of difficulty,” 1 the generalperception that the journey needs to be difficult to be worthwhile. A reflection of this on the K-12 student, and primary and secondary education at large, makes one consider where and howthe requisite “grit” 2 is forged.Makers are those who use technology to solve problems and invent solutions. The problems arepersonal in nature to the individual Maker, resulting in passionate, self-directed work towards asolution. With this work, we investigate youth actively
Conference Session
K-12 & Pre-College Engineering Division: Robotics in Pre-K-12 Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Fethiye Ozis, Northern Arizona University; Anna Danielle Newley, Sonoran Science Academy - Phoenix; Erdogan Kaya, University of Nevada - Las Vegas
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
compared to their peers,who were members of other clubs instead8. Schools can run successful programs if district anduniversity partnerships are established to train teachers on the best approach and receive mentorsupport from people whom share familiar backgrounds8. Unfortunately, this was not the case forour group, we lacked available mentors that reflect the culture of our student body in addition tothe lack of established partnerships with our charter school and nearby universities due to highturnover rate of coaches. To the best of our knowledge, this is the first time that data has beencollected on a FTC team comprised of 83% girls, 80% of students on refugee status, and 100%of students on national free and reduced lunch program.The need to
Conference Session
K-12 & Pre-College Engineering Division: Fundamental & Research-to-Practice: K-12 Engineering Resources: Best Practices in Curriculum Design (Part 2)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Mary Ann Jacobs, Manhattan College; Kathleen Christal Mancuso, Manhattan College ; Zahra Shahbazi, Manhattan College; Alexandra Emma Lehnes, Manhattan College; Anthony Scotti, Manhattan College
Tagged Divisions
Pre-College Engineering Education Division
both parties to what is occurring outside of their respective fields and ways thateach can benefit from the other. The final product of a lesson plan may not be directly applicableto the engineering faculty; however, the professors are positively impacted in their ownprofessional development by being able to creatively think and influence students before theyreach college. They experience the effort required to make the material applicable and interestingand watch it come to life in their team members’ classrooms, while allowing them to evaluatetheir own teaching styles through the eyes of the teachers to reflect upon.Procedure & Methods Thirty-four public and private schools in close proximity to Manhattan College
Conference Session
Pre-College: Perceptions and Attitudes on the Pathway to Engineering (1)
Collection
2017 ASEE Annual Conference & Exposition
Authors
Marcelo Caplan, Columbia College Chicago
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
families are invited to one of SfT’s partner institutions, including theMuseum of Science and Industry, The Field Museum of Natural History and the PeggyNotebaert Nature Museum.The question the SfT initiative explores is if there are changes in participants’ and out-of-school time organization leadership’s attitude towards STEAM, as well as a gain in contentknowledge. To study this question, participants are given a survey gaging their attitudes andknowledge about STEAM before and after each module. Additionally, all instructors arerequired to complete Activity Journal Logs after each of their class sessions. These journalsallow instructors to reflect on their classes and help to identify where they needed moresupport from the SfT initiative
Conference Session
Pre-College: Engineering Undergraduates as Teachers
Collection
2017 ASEE Annual Conference & Exposition
Authors
Malinda S. Zarske, University of Colorado, Boulder; Janet Y. Tsai, University of Colorado, Boulder; Jacquelyn F. Sullivan, University of Colorado, Boulder; Marissa H. Forbes, University of Colorado, Boulder; Denise W. Carlson, University of Colorado, Boulder
Tagged Divisions
Pre-College Engineering Education Division
(engineeringmanagement is the most popular). And yet, the number of students enrolled in the CU TeachEngineering concentration does not nearly reflect the scale of interest initially expressed by theundergraduate engineering student body on a 2012 survey: while one-quarter of the almost 1,000respondents indicated an interest in K-12 teaching on the survey, just 14 students are currentlypursuing the CU Teach Engineering concentration. What is keeping those who indicated ahypothetical interest in K-12 teaching from enrolling in it and pursuing secondary STEM teacherlicensure as part of their engineering degrees? This paper seeks to begin probing this complexquestion by taking a historical perspective, integrating data from the initial launch of the programwith
Conference Session
Pre-College: Robotics
Collection
2017 ASEE Annual Conference & Exposition
Authors
S. M. Mizanoor Rahman, New York University; Veena Jayasree Krishnan, New York University, Tandon School of Engineering; Vikram Kapila, New York University, Tandon School of Engineering
Tagged Divisions
Pre-College Engineering Education Division
incorporated in the form of educational technology to promote effective pedagogy, whichhas fostered the development of a new conceptual framework termed as the technological-pedagogical-content-knowledge (TPACK).2-4 The concept of TPACK reflects the status oftechnological, pedagogical, and content knowledge of educators.3 Moreover, the intersection ofthe three constitutive knowledge domains of TPACK, viz., technology, pedagogy, and content giverise to four additional knowledge domains, viz., technological pedagogical knowledge,pedagogical content knowledge, technological content knowledge, and technological pedagogicalcontent knowledge.4It is believed that the application of TPACK framework can make its three core knowledgedomains complementary to
Conference Session
Pre-College: Perceptions and Attitudes on the Pathway to Engineering (3)
Collection
2017 ASEE Annual Conference & Exposition
Authors
Meltem Alemdar, Georgia Institute of Technology; Jessica D. Gale, Georgia Institute of Technology, Center for Education Integrating Science, Mathematics, and Computing ; Jeremy Lingle, Georgia Institute of Technology; Sunni Haag Newton, Georgia Institute of Technology; Roxanne Moore, Georgia Institute of Technology; Jeffrey H. Rosen, Georgia Institute of Technology; Marion Usselman, Georgia Institute of Technology
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
researchers seek to understand whether and to what extent thedevelopment of engineering “habits of mind and action” in middle school STEM (science,technology, engineering, and math) courses leads to improvements in problem solving abilities,integration of STEM content, and increased interest in engineering. The Next Generation ScienceStandards (NGSS; NGSS Lead States, 2013) call for “raising engineering design to the samelevel as scientific inquiry in science classroom instruction at all levels” (p. 1). Reflecting thisemphasis on engineering as a core idea, recent reforms include proficiency in engineering designas a key component of college and career readiness (Auyang, 2004; Carr, Bennett, & Strobel,2012; Duderstadt, 2008; Kelly, 2014
Conference Session
K-12 & Pre-College Engineering Division: Fundamental & Research-to-Practice: K-12 Engineering Resources: Best Practices in Curriculum Design (Part 2)
Collection
2016 ASEE Annual Conference & Exposition
Authors
Louis Nadelson, Utah State University; Christina Marie Sias, Utah State University; Anne Seifert, Idaho National Laboratory
Tagged Divisions
Pre-College Engineering Education Division
deviate from the design cycle. For example,instead of developing prototypes that provided solutions to problems, the teacher generatedengineering lessons evolved to a focus on building models of processes (e.g., the sprouting of aseed) or tinkering to make a product, without documentation, testing, evaluation, or redesign aspart of the process. While students were engaged in these activities, many of the lessons werenot aligned with basic engineering principles and design, but did involve hands-on building of aproduct or tool in response to provided criteria. However, the notion that engaging students inhands-on activities to build something as engineering reflects a limited understanding of trueengineering design.36 The research of Nadelson et
Conference Session
K-12 & Pre-College Engineering Division: Evaluation: Impact of Curriculum for PreK-12 Engineering Education
Collection
2016 ASEE Annual Conference & Exposition
Authors
Amy Trauth, University of Delaware; Jenni Buckley, University of Delaware; Manuela Restrepo Parra, The Perry Initiative
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
variables such as gender, race, ethnicity, family’seducational background, and socioeconomic status. English et al. (2013) reported findings from a STEM-based lesson in whichstudents explored engineering concepts and principles pertaining to simple machines.The students clearly indicated how the machines were simulated by the materials. Thestudents were also able to reflect on different aspects of their design, especially onmaterial properties and how they affected stability. Allowing students to suggest ways toimprove their designs provided opportunities for further reflection in subsequent designprocesses. In general, students did not make explicit references to underlyingengineering and science principles, but they were able to link
Conference Session
K-12 & Pre-College Engineering Division: Addressing the NGSS: Supporting K12 Teachers in Engineering Pedagogy, Engineering Science, Careers, and Technical Pathways
Collection
2016 ASEE Annual Conference & Exposition
Authors
Julie Cafarella, University of Colorado - Boulder; Kevin O'Connor, University of Colorado - Boulder; Jacob (Jenna) McWilliams, University of Colorado - Boulder
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
applicable to asignificant population of students and educators. Further, this case study is relevant toengineering education in that it centers around a classroom that is engaged in “application ofscientific knowledge to an engineering problem,” and NGSS frames this case study as anexample of its “vision of blending disciplinary core ideas, scientific and engineering practices,and crosscutting concepts.” Throughout this paper the authors examine and reflect on the purposes of science andengineering education as well as the ways in which large-scale science reforms (such as NGSS)attempt to address issues of access and equity that continue to persist in science and engineeringeducation. In future, the authors hope to analyze other NGSS case
Conference Session
K-12 & Pre-College Engineering Division: Research-to-Practice: Principles of K-12 Engineering Education and Practice
Collection
2016 ASEE Annual Conference & Exposition
Authors
Malinda S. Zarske, University of Colorado - Boulder; Maia Lisa Vadeen, University of Colorado - Boulder; Janet Y. Tsai, University of Colorado - Boulder; Jacquelyn F. Sullivan Ph.D. , University of Colorado - Boulder; Denise W. Carlson, University of Colorado - Boulder
Tagged Divisions
Pre-College Engineering Education Division
of the authors) read and color-coded the transcripts according to the11 themes listed in Table 1. Related text was classified by giving each fragment of color-codedtranscript a unique identification number, and entered into spreadsheet columns and rows forindexing and to facilitate comparison of each coder’s responses. The inter-rater reliability wasdetermined through visual comparison of lines of coded text from each coder. Findings reportedin this paper reflect only the text with unanimous thematic agreement by all three readers.FindingsSurvey and focus group analysis showed that CU Teach Engineering students are enthusiastic toexplore their interests in both engineering and teaching. They view engineers and teachers asdifferent, but find
Conference Session
Pre-college Engineering Education Division Poster Session
Collection
2017 ASEE Annual Conference & Exposition
Authors
Jumoke Oluwakemi Ladeji-Osias, Morgan State University; LaDawn Partlow, Morgan State University
Tagged Topics
Diversity
Tagged Divisions
Pre-College Engineering Education Division
products for each session. In order to ensure apositive learning environment, STEM undergraduate and graduate students served as classroomassistants and mentors to program participants. In the summer, the mentors were on campus fortwo weeks before participants arrived, to learn how to use software tools and create a PowerPointdeck (with reflection questions) about black and Hispanic inventors. The mentors also learnedabout behavior characteristics of middle school boys and how to create a supportive interaction.They also received training from CARES Mentoring Movement, an organization dedicated tohealing African-American communities through mentoring.Academic Year ProgramDuring the academic year, activities were converted from semester-long to
Conference Session
Pre-college Engineering Education Division Poster Session
Collection
2017 ASEE Annual Conference & Exposition
Authors
Matthew Mueller, Tufts University; David Alsdorf, Tufts University
Tagged Divisions
Pre-College Engineering Education Division
   to   students   and   pointed   out,   “it   would   have   been   good   to see   more   interrogating   of   student   ideas   and   less   noting.”   Formative   assessment   also   influenced the   game’s   design   because   it   provides   teachers   opportunities   to   meta­cognitively   examine   their ideas   and   goals,   helps   students   reflect   on   their   learning,   and   develop   the   agency   of   other   students as   instructional   actors   (e.g.,   through   peer   to   peer   learning) [7][8] .   Teachers  Students  1.   The   game   sparks   conversations   that   allow   for   a  focused