Paper ID #15363Engaging Secondary School Students in Science by Developing Remote Lab-oratoriesDanilo Garbi Zutin, Carinthia University of Applied Sciences Danilo G. Zutin is currently a Senior Researcher and team member of the Center of Competence in Online Laboratories and Open Learning (CCOL) at the Carinthia University of Applied Sciences (CUAS), Vil- lach, Austria, where he has been engaged in projects for the development of online laboratories, softtware architectures for online laboratories and online engineering in general. Danilo is author or co-author of more than 30 scientific papers published in international
professional development, program evaluation, multidis- ciplinary research, and conceptual change. Nadelson uses his over 20 years of high school and college math, science, computer science, and engineering teaching to frame his research on STEM teaching and learning. Nadelson brings a unique perspective of research, bridging experience with practice and theory to explore a range of interests in STEM teaching and learning.Ms. Christina Marie Sias, Utah State University Christina Sias is a PhD. student at Utah State UniversityMrs. Anne Seifert, Idaho National Laboratory Anne Seifert EdS INL K-12 STEM Coordinator Idaho i-STEM Coordinator Anne Seifert is the Idaho National Laboratory STEM Coordinator and founder and
Paper ID #18723Interactive Digital Logic Laboratory for K-12 Students (Work in Progress)Dr. Rohit Dua, Missouri University of Science & Technology ROHIT DUA, Ph.D is an Associate Teaching Professor in the Department of Electrical and Computer En- gineering at the Missouri University of Science and Technology and Missouri State University’s Coopera- tive Engineering Program. His research interests include engineering education. (http://web.mst.edu/˜rdua/) c American Society for Engineering Education, 2017 Interactive Digital Logic Laboratory for K-12 Students (Work in
director of the Nonlinear and Autonomous Systems Laboratory (NASLab). She is a recipient of 2015 National Science Foundation CAREER award and 2015 Office of Naval Research YIP award.Dr. Mo Rastgaar, Michigan Technological University Mo Rastgaar received the Ph.D. degree in mechanical engineering from Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, in 2008. He is currently an Associate Professor in mechanical engineering and the Director of the Human-Interactive Robotics Lab. His present research focuses on assistive robots by characterizing the agility in the human gait. Dr. Rastgaar is a recipient of 2014 NSF CAREER Award.Saeedeh Ziaeefard, Michigan Technological University Saeedeh
demonstrated proficiency and interest in science, technology, engineering,and math (STEM) with the opportunity to partake in a paid college laboratory researchexperience. The requirements of acceptance to the program are strong academic credentials and awell-rounded balance of extra-curricular activities. The program seeks to ensure that studentswith a demonstrated interest and ability in STEM are provided an opportunity to participate in acomprehensive research experience before completing high school. Offering this program free ofcharge, with a small stipend to offset transportation costs, enables all invited students to takeadvantage of this opportunity. Supporting program components and the execution of theseelements distinguishes it from many
enrolled students from 16 different states and 2different countries, allowing for a mixture of cultural and education levels. Each course is aperiod of 2-3 weeks where the students attend lessons Monday-Friday. Students have the optionof enrolling in multiple courses as scheduling of the courses permits. Each course costs $1,250which pays for the instructor’s time, laboratory supplies, teaching assistants, and a fee to theprograms maintenance and support.The 2016 summer program has a total of 8 courses being offered with a maximum enrollment of16-20 students depending on the course: • CENG 1015: Princples of Chemical Engineering with Lab • CMPS 1005: Python Programming: Introduction to Computer Science • EBIO 1231: Exploring Animal Behavior
. Girls met three female professors in engineering including NDSU distinguished professor Dr. Kalpana Katti in Civil and Environmental Engineering, Women-In- Research Chair Dr. Yechun Wang in Mechanical Engineering and Vice President of IEEE Red River Valley Section Dr. Na Gong in Electrical and Computer Engineering. Touring research laboratories in ECE. The girls also toured research laboratories in ECE. During the tour, they were introduced to different research equipment and various research projects. Learning outstanding senior design projects: The outstanding senior design groups introduced and demonstrated their senior design projects to the girls. Meeting ECE female undergraduate and graduate Students
materials (harvesting and storage), flame retardant polymers, nanocompsite materials, and advanced materials characterization. He is an active member of professional organizations related to his research interests. He has authored more than 40 technical papers.Mr. Curtis Paul Desselles Jr., I am the Engineering Laboratory Coordinator at Northwestern State University of Louisiana (NSULA). My specialty is robotics and building and designing scientific devices. My experience is as follows: Retired U.S. Navy Medical Laboratory Technologist and Physician’s Assistant (P.A.). I worked as a Research Fellow at National Center for Preservation Technology and Training (NCPTT) following my career in the Navy. I also work as a
project-based learning curriculum integrated into math or science courses (Table 1). Students must conduct laboratory and simulated experiments, carry out analysis, and develop a hands-on model based on their results. Laboratory experiments are described in Table 2. Each lesson consists of PowerPoint presentations and laboratory handouts with student worksheets. It should be noted that the CorrSim II program used in the module is a free software available at (http://corrdefense.nace.org/corrdefense_Spring2014/tech4.asp). Instructor professional development materials are also included, consisting of lesson plans, PBL Learning Experience Design (LED) template, student success rubrics, and instructional material on the laboratory and simulation
Paper ID #16051of the Central Information Technology Services (RUS) at the same time. Some of the main areas of herresearch are complex IT-systems (e.g. cloud computing, Internet of Things, green IT & ET, semanticweb services), robotics and automation (e.g. heterogeneous and cooperative robotics, cooperative agents,web services for robotics), traffic and mobility (autonomous and semi-autonomous traffic systems, inter-national logistics, car2car & car2X models) and virtual worlds for research alliances (e.g. virtual andremote laboratories, intelligent assistants, semantic coding of specialised information). Sabina Jeschkeis vice dean of the Faculty of Mechanical Engineering of the RWTH Aachen University, chairwoman ofthe board of
Standards (NGSS). Itempowers students, and their teachers and communities, to create innovative solutions to apervasive environmental problem: stormwater. This has been achieved by actively engagingparticipants with STEM professionals in an inquiry and project based instructional environment.Using the latest sensor technology for data collection and computer modeling for data analysis,students address the widespread problem of stormwater management. During a 3-dayStormwater Institute at the University of Maine, the participants gain the knowledge of workingwith wireless sensors and laboratory systems to collect water measurements, includingtemperature, conductivity, pH, phosphorous, dissolved oxygen, and bacteria. The students thencan map water
surveys,we are able to comprehensively analyze both the perceived impact of our camp from theattendee’s perspective. We also acknowledge and thank Microsoft and Facebook for theirgenerous financial support of this effort.IntroductionLast year, a local middle school teacher contacted our research laboratory to request acybersecurity awareness presentation to her computer class. With two groups of students in anelective course, the presentation was held twice. Between the two classes there was one girl inattendance. During the discussions following the presentation, both students and teachers had aninterest in cybersecurity, but felt they lacked sufficient training and suitable subject mattermaterials. In discussions with other local schools, and
students (rising 9-12 grades). A wide range of transportation modes are introduced through carefully designedcurriculum activities. Activities include lectures led by professors, hands-on laboratory exercisestailored to engage teenagers, presentations by transportation practitioners, enrichment activities ledby CTDOT, and field trips to Connecticut landmark projects. Program details undergo refinementsand improvements each year, but basic curriculum remains the same, an example being threemodules consistently dedicated to three fundamental transportation modes: land, water and air. The land module generally covers a bridge design competition, which is a miniature versionof the renowned National Bridge and Structure Competition initiated by
: • Curriculum Enhancement Activities (CEA) – Hands-on, inquiry-based K-12 STEM curricula o The outreach program at ECSU utilizes current existing grade appropriate CEAs adopted through well-established NASA STEM curriculum and integrate 3D printing, sensor-based measurement modules, and mini quadcopter UAV design to further enhance the learning experience. Students participating in the program completed a total of thirty-six (36) to Forty (40) hours of hands-on learning per year. • Aerospace Educational Laboratory (AEL) o The AEL consists of fifteen computerized lab stations loaded with CEAs with specific emphasis on the NASA Science and
Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics and Control Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a GK-12 Fellows project, and a DR K-12 research project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and control system technology. Under Research Experience for Teachers Site and GK-12 Fellows programs, funded by NSF, and the Central Brooklyn STEM Initiative (CBSI), funded by six philanthropic foundations, he has con- ducted significant K-12 education, training, mentoring, and
contractor, under the umbrella of a multi-million dollar contract, in space flight hard- ware research and development to NASA Glenn Research Center in Cleveland, Ohio. Dr. Garafolo was instrumental in developing a synergistic approach in the research and component modeling of elastomeric space seals for manned spaceflight; an asset to NASA and the development of advanced aerospace seals for the next generation of manned spacecraft. The unique problem necessitated a grasp of both fluid dynamics and material science, as well as experimental and computational analysis. As a DAGSI/Air Force Research Laboratory Ohio Student-Faculty Fellow, Dr. Garafolo gained experimental knowledge in structural dynamics of turbomachinery. In
incorporated problem-based learning into her lectures, lab- oratories, and outreach activities to engage students and the community in the STEM education process.Dr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She was director of the (Engineers in Technical Humanitarian Opportunities of Service
development organization.Dr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She was director of the (Engineers in Technical Humanitarian Opportunities of Service-Learning) for approximately ten years. She has incorporated service-learning projects into her classes and laboratories since she started
the world’s largest university specializing in Aerospace Engineering. ThePrescott, Arizona campus of ERAU focuses on excellence in undergraduate education, with acurrent enrollment of over 2000 students. The College of Engineering is the largest college oncampus and is focused exclusively on undergraduate education. The College strives to providean environment that facilitates faculty-student interaction, provides a hands-on learningenvironment, and prepares students for success in industry starting with their first day on the job.Because the focus of the College is undergraduate education, well-equipped laboratories thatfeature extensive space dedicated to hands-on student learning are available. Reduced demandfor these facilities during
assistant professor in the Mechanical Engineering-Engineering Mechanics Department at Michigan Technological University since 2011. She is the founding director of the Nonlin- ear and Autonomous Systems Laboratory (NASLab). Her research interests include robotics, dynamics and control of autonomous systems, and energy autonomy. She is a recipient of 2015 National Science Foundation CAREER award and 2015 Office of Naval Research YIP award.Ms. Saeedeh Ziaeefard, Michigan Technological University Saeedeh Ziaeefard is a PhD student and research assistant with Nonlinear and Autonomous Systems Laboratory (NASLab) in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Technological University. Her
graduate students responded to the question of theirconfidence in their ability to mentor students at the beginning and towards the end of theexperience. Figure 6 (a) shows the confidence the graduate student had in themselves to mentorothers in research, while Figure 6 (b) demonstrates the students’ evaluation of the program interms of helping them develop their confidence in mentoring.Table 2 which summarizes some of the statements made by the students themselves, showinghow they reacted to the experiences they were provided in the laboratory setting. It is clear fromtheir responses that the students gained a substantive experience that they would not have had theopportunity to have in the classroom. In addition, these students were able to
. Dr. Frye is the PI and Laboratory Director for the Autonomous Vehicle Systems Lab sponsored by the Air Force Office of Scientific Research.Dr. Sreerenjini C. Nair, University of the Incarnate Word Assistant Professor in Physics, University of the Incarnate Word, San Antonio, TXMrs. Angela Meyer, Rawlinson MS Secondary Teacher at NISD Ed Rawlinson Middle School UIW Graduate Student (graduating in May 16 K-12 Multidisciplinary Sciences) c American Society for Engineering Education, 2016 Evaluation of miniGEMS 2015 –Engineering Summer Camp for Middle School GirlsAbstractminiGEMS (Girls in Engineering, Mathematics, and Science) was a free five-day EngineeringSummer
Paper ID #17784Work in Progress: Afterschool STEM/Literacy Program—A Description ofthe ProcessDr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She was director of the (Engineers in Technical
interpreted NSE foundational content. The frequency ofdepictions related to the first three foundational content areas were recorded as well as how oftenan idea related to biology, chemistry and physical science.Description of ActivityThe NSE activity was an adaptation of an undergraduate laboratory on measuring contact angleson hydrophobic surfaces [9]. It was implemented in three magnet public high schools classroomswhere students were in their junior or senior year. The classes were electives in advancedphysics, an introductory course to chemical engineering and an introductory course toaeronautical engineering. The concept of surface wettability was briefly introduced in each classthrough a class discussion highlighting commercial products that
University Dr. Adam Fontecchio is an Professor of Electrical and Computer Engineering, Vice-Dean of the Graduate College, and Director of the Center for the Advancement of STEM Teaching and Learning Excellence (CASTLE). He is the recipient of a NASA New Investigator Award, the Drexel Graduate Student Associ- ation Outstanding Mentor Award, the Drexel University ECE Outstanding Research Achievement Award and the International Liquid Crystal Society Multimedia Prize. In 2003, he received a NASA/ASEE Sum- mer Faculty Fellowship to research NEMS/MEMS adaptive optics in the Microdevices Laboratory at the Jet Propulsion Laboratory. Dr. Fontecchio received his Ph.D. in Physics from Brown University in 2002. He has authored
Paper ID #15884Future K-12 Teacher Candidates Take on Engineering Challenges in a Project-Based Learning CourseDr. Pamalee A. Brady, California Polytechnic State University - San Luis Obispo Pamalee Brady is an Associate Professor at California Polytechnic State University, San Luis Obispo. She teaches courses in structural systems, concrete, steel and wood design as well as structural engineer- ing courses for architecture and construction management students. Prior to joining the faculty at Cal Poly she worked in applied research at the U.S. Army Construction Engineering Research Laboratory in Champaign, Illinois. She is
Research.Dr. Vikram Kapila, New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics and Control Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a GK-12 Fellows project, and a DR K-12 research project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and control system technology. Under Research Experience for Teachers Site and GK-12 Fellows programs, funded by NSF, and the Central Brooklyn STEM Initiative (CBSI), funded by six philanthropic foundations
for laboratory facilities by undergraduate studentsprovides the opportunity to repurpose the laboratory space for other activities—such as outreachto K-12 students. Additionally, Prescott has a relatively mild summer climate that is conducive toengaging in outdoor summer activities, unlike most of the rest of the state of Arizona. For thesereasons, the College has a well-established record of hosting a variety of summer experiences forhigh school students2,3.Most outreach programs fall into one of the following categories4: the development of classroommaterial, including Web-based resources; the professional development of teachers; conductingoutreach activities at the local school; conducting or sponsoring engineering contests
Paper ID #15982Assessing the Efficacy of K-12 Engineering Outreach ”Pick Up and Go” KitsDr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She was director of the (Engineers in Technical
, India. She is currently pursuing Ph.D. in Mechanical Engineering at NYU Tandon School of Engineering. She is serving as a research assistant under an NSF-funded DR K-12 re- search project to promote integration of robotics in middle school science and math education. For her doctoral research, she conducts mechatronics and robotics research in the Mechatronics, Controls, and Robotics Laboratory at NYU.Dr. Vikram Kapila, New York University, Tandon School of Engineering Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a