principles. We have summarized the technical and soft skills taughtin each of our courses and given the importance of each skill to engineering managers (Table 1).Our program distinction is the business courses, but we included our regular engineeringtechnology courses for comparison. These courses collectively develop a robust toolkit oftechnical and soft skills crucial for Engineering Managers to effectively lead technical teams,projects, and organizations. The emphasis on applying knowledge to real-world problems,communicating with diverse stakeholders, thinking critically and ethically, and workingcollaboratively prepares students for the multifaceted challenges and opportunities they will faceas Engineering Managers in industry. Graduates go to
early introduction to the softwaredesign process and a consideration of ethical issues that are inherent in technology. A widevariety of projects that inevitably result from this process, also give students in class exposure toa wide range of possibilities when it comes to programming and where programming can beapplied, even at their early programmer level. Although this process is intensive and requiressignificant instructor time and was primarily done in classes of up to 43 students, the approachdescribed can be scaled to larger classes through trained teaching assistants and how to approachthis is discussed. The value of increased engagement, continued engagement and learning afterthe end of the course, and, confidence boost overall makes
year-long Capstone design experience. With a fo- cus on providing students with a broader experience base, the multidisciplinary program applies teams of engineers, business, design, and other students to work with Ohio companies to help them be more competitive and with local non-profits to help them become self-sustaining. Using a formal design pro- cess, teams develop new products to meet industries’ competitive needs and others to meet the needs of people with disabilities. Students learn to solve open-ended problems and gain skills in critical thinking, professional communication, ethics, and teamwork. Rogers recently expanded this one-year program to a four-year Integrated Engineering and Business (IBE) honors
complex challenges in their professional context that requireboth technical and social competencies and include providing clean water, the ethics ofdeveloping AI, engineering better delivery of medication, and preventing nuclear terror [1]. Toeffectively solve these complex problems, engineers have to rigorously and adeptly applytechnical skills and soft skills such as communication, collaboration, and empathy [2]. Soft skillsare widely recognized as having increasing importance for employment, career success, andprofessional and personal satisfaction in modern engineering workplaces [3].Empathy is a critical soft skill, focused on building emotional intelligence [2], [4], [5], [6], andhas many definitions in the literature [7]. This work is
. The results provide insight intothe prioritization of laboratory learning outcomes and allow the redesign of laboratory courses tobetter align with the skills and attributes desired from all three stakeholder groups.IntroductionOver the last decade, many surveys and studies have considered the future of chemicalengineering and its alignment with industry expectations [4], resulting in changes to ABETrequirements [5] (specifically towards process safety education [6] and ethics and socialresponsibility [7]). A larger picture of chemical engineering modernization was the focus of arecent National Academies report entitled “New Directions for Chemical Engineering”, whichexplored research and undergraduate educational program updates [8
aspects. These new analyses present a holistic view of engineering problems including impact andinfluence from humanistic, social and philosophical aspects, culminating in thorough, robust, andintelligent solutions that can adequately identify and address the morality and ethics oftechnological design and engineering role [10]. Technical criteria Beliefs Economics Engineering solutions Stakeholders Policies SocialFig. 1: Multidimensional
-day educationalexperience. The mission of the cadet program is to educate and prepare graduates to serve asprincipled leaders by instilling core values focused on academics, duty, honor, morality,discipline, and diversity. The high ethical calling of engineering students is further supportedthrough the unwavering devotion to the honor code, which states, “A cadet does not lie, cheat, orsteal, nor tolerate those who do.” Additionally, the institution’s curriculum and studentdevelopment program include eight semesters of ROTC military leadership instruction andstudent-centered barracks campus life focusing on moral and ethical leadership principles.Students who enter the 2+2 program, which is offered in conjunction with Trident TechnicalCollege
adaptability inprofessional life. What is more, he introduced interesting questions about automation and labor,some that could help students engage the ethical and moral dimensions of robotics. Yet, thenarrative he constructed is ultimately from the perspective of the business owner who profitsfrom technological unemployment. It may be the case that questions about the negative intendedand unintended consequences of STEM might be difficult for teachers to navigate and may evenappear contradictory if the goal is to inspire entry into affiliate careers.Considering her students’ age and interests, Deborah proposed that an older student or a roboticsteam might be appropriate guest speakers. She explained her rationale, I would probably have another
notspecifically target the freshman-to-sophomore transition [12, 13]. We therefore created aprogram that begins in the last term of the participants’ freshman year, with a service learningEngineering Ethics and Professionalism course, and allows students to work on service learningprojects for a local community organization in the summer. The design projects, with theirinevitable need to revisit design choices, teach students to build grit and learn from mistakesthrough the iterative process of design, build, and test. It also builds their engineering identity, asthey see themselves more as real-world problem solvers. The service learning aspect enablesstudents to see the impact of their engineering abilities on their local community and motivatesthem to
EJE's relevance in addressing sustainability and social equity. By promotinginclusive pedagogical approaches and continuous reflection, we aim to equip students with theskills to design ethical engineering solutions. Through collective efforts, we aspire to contributeto a more sustainable and equitable future, fostering understanding and action in EnvironmentalJustice Education.Key words: Environmental Justice, Equity, Engineering Education IntroductionThe purpose of this Work in Progress research paper and ECSJ-DEED joint technical session isto highlight the crucial role of Environmental Justice Education (EJE) in bridging the gapbetween educators and students, particularly in the context of engineering
introduce topics such as thehistory of technological innovations, profiles of important innovators, engineering and socialjustice, and engineering ethics. The instructor framed the discussions around societal and culturalintersections with engineering, providing an opportunity for in-class discussion of issues thatstudents find important to engineering. For example, one of the authors of this paper uses lecturetime to discuss how different engineering disciplines evolved over time. Historic and non-western examples were used to highlight elements of engineering that expand students’conception of the profession, while local examples drew students into issues that might directlyimpact their own lives. The course also highlighted the contributions of
briefdescription of the course and the assessment strategy are discussed. Collaborative engineering educationresearch efforts and assessment of the fall 2015 data are ongoing and results will be included in the finalpresentation.2. Workshop Summary2.1 Experiences from First-Year Courses Topics One of the goals of the workshop was to share experiences from college-wide first year engineeringcourses at Virginia Tech. First-year engineering courses are required of all engineering freshman (~1,500/ year) at Virginia Tech with the purpose of introducing engineering students to the profession, datacollection and analysis, mathematical modeling, problem-solving, software tools, design, professionalpractices, communication, teamwork, ethics and the diversity
pursued byengineers to gain visibility, achieve relevance, and influence the public. The profession ofnursing offers three advantages as compared to the profession of engineering in terms ofeffective public engagement, including: 1) trust (i.e., Gallop shows nursing as the “most trusted”profession for 15 years running); 2) gender bias (i.e., the profession of nursing is primarilycomposed of females, which the engineering profession claims is an important target audiencefor marketing efforts); and 3) professionalism (i.e., the canons of ethics for nurses emphasize theimportance of the patient – and hence the value of the individual – while the canon of ethics forengineers emphasize the importance of the nameless “public” – and hence looses the
benefit of and meaning behind research is first clearly communicatedand emphasized to researchers as they conduct their work. According to the NSF, broader impacts are the “potential (for your research) to benefitsociety and contribute to the achievement of desired society outcomes,”. Some examples ofsocietal outcomes include public engagement, education, inclusion, societal wellbeing, nationalsecurity, strengthened infrastructure, and economic competitiveness, among others. The Ethical,Legal, & Societal Implications (ELSI), of an engineering research project refers to the analysis ofthe societal implications of novel and emerging research and associated or resultingtechnological advancements (Ogbogu & Ahmed, 2022). Engineering
mycorrhizaas a simile of these invisible connections. Mycorrhiza is a symbiotic association betweenfungi and plants that cycles nutrients to improve the whole ecosystem. The Mycorrhizaframework aims to raise awareness of the effects of engineering education and work,incorporate social and environmental justice in engineering education, and move closer tohelping people freely and fully develop in a sustainable world. I. IntroductionIt is essential for people and the Ecosystem that we raise awareness of our engineeringimpact. Demanding for people to take action, Singer [1] presented an ethical decisionwhere we would see a child drowning. Most people would do their best to come up with asolution to help the child. Engineering with visible results or
applicationexploration/storytelling.Conclusion: Through the use of examples, personal interactions, and application or classroomcontext-based anecdotes, faculty are already creating authentic microcosms of inclusiveclassrooms and are struggling to articulate how they do it to administrators and ABET. Wesuggest these resultant methods be used to create microinsertions of ethics and social impacts asone strategy for minimizing the technical/social dualism present in most curriculum [6], [7]which we hope will prove a rigorous strategy for the eventual full integration of sociotechnicalapproaches to problem solving in engineering education.IntroductionThere is a lack of consistency concerning integrating social impacts fully into technical lessons,modules, courses
- gineer in multiple states. Dr. Barry’s areas of research include assessment of professional ethics, teaching and learning in engineering education, nonverbal communication in the classroom, and learning through historical engineering accomplishments. He has authored and co-authored a significant number of journal articles and book chapters on these topics. Dr. Barry is the 2020 recipient of ASEE’s National Outstanding Teaching Award.Major David Carlson P.E., United States Military Academy Major David Carlson is an instructor of Civil Engineering in the Department of Civil and Mechanical En- gineering at the United States Military Academy, West Point, NY. He was commissioned as an Engineer Officer from the U.S
Teaching / Learning 4 Learning Styles Straw Towers Hiring and Firing Learning Process Process Industry Guest Ch 4: Making the Most 5 Ethics Ethics Tutoring Center Speaker of How You are Taught Ch 5: Making the Industry Guest 6 Name Practice Learning Process Work Names Success in Math Speaker for You Industry Guest
- fessional formation of engineers, diversity, inclusion, and equity in engineering, human-centered design, engineering ethics, and leadership.Dr. Andrew O. Brightman, Purdue University at West Lafayette Andrew O. Brightman serves as Assistant Head for Academic Affairs and Associate Professor of Engi- neering Practice in the Weldon School of Biomedical Engineering. His research background is in cellular biochemistry, tissue engineering, and engineering ethics. He is committed to developing effective ped- agogies for ethical reasoning and engineering design and for increasing the diversity and inclusion of engineering education.Prof. Patrice Marie Buzzanell, University of South Florida Patrice M. Buzzanell is Professor and
. While this course uses active learning approaches and team projects, the scope of theircontents distinguish them from similar courses that seek to achieve improved graduation andretention rates. For instance, in this course, soft skills such as technical writing, use of Excel,developing an individual academic plan of study, cooperative education, internships, culturaldiversity, quality, safety, and ethics are covered. Basic technical skills covered include math,mechanical, electrical, and computer engineering technology. The rationale for this course is toexpose students to these subjects and topics before they enroll in core engineering technologycourses such as applied statics.Assessment of learning:While the author plans to conduct this
. First-year projects differ across universities, but typical projects can include a focus ondesigning and building prototypes, working in teams, full- and small-scale projects, case-studyanalysis, reverse engineering, and the integration of engineering, math, and science courses 2.The course described in this paper builds on the effective components of project-based, hands-onfirst-year design projects, and uses the human centered design process to frame an approachwhere students are encouraged to incorporate the user, environment, and ethical considerationsthroughout the process. The course has capacity for over 1,600 students annually at theUniversity of Florida providing meaningful individual hands-on makerspace skills to eachstudent, and
transference learning, detailing its components and illustratingits integration of adaptive feedback with real-world experiences. Next, we discuss the outcomes ofa pilot study evaluating the model’s effectiveness, focusing on metrics such as latency, accuracy,and learner engagement. Finally, we summarize the findings and propose directions for futureresearch, emphasizing scalability, expanded modalities, and ethical considerations in AI-driveneducational solutions.Literature ReviewArtificial intelligence has been increasingly applied in educational settings to develop IntelligentTutoring Systems (ITS) and Adaptive Learning Systems (ALS). Early work by [1] and [2] demon-strated that personalized instruction could improve user achievement by tailoring
sustainability and its incorporation into engineering curricula and engineeringdesign are of paramount importance across all engineering disciplines due to several factors,such as environmental protection, resource management, economic benefits, innovation/competitiveness, and social responsibility. Furthermore, with the increased focus onaccreditation criteria emphasizing engineering ethics and professional responsibilities across allfour ABET commissions, the topic of sustainability has been considered an essential addition tothe engineering technology curriculum. The engineering department at Cuyahoga CommunityCollege (Tri-C) initiated the process to determine how sustainability can be included in thecurriculum. The process was executed in the
in their own section(s) anddivide the classes up into student groups of 4-5 students. Our instructional team consistscompletely of teaching professionals (non-tenure track faculty) with a variety of backgroundsand industry experience. In order to make mentoring 10 to 20 teams tractable, all students teamscomplete the same design challenge. Creating a “good” design challenge is crucial, as the coursedoes more than simply teach the design process (see Figure 1). Teaming and leadership skills,project management, ethics, and technical communication are important outcomes for the course.All of these “Soft-skill” areas are made more palatable to our students if our design challenge isengaging and fun.With eleven different engineering disciplines
KSAs were often based on animprecise definition of global engineering competency define global engineering competency as“those capabilities and job requirements that are uniquely or especially relevant for effectiveengineering practice in global context.” This team identifies three dimensions: technicalcoordination, or working with or influencing people to complete a project in amultinational/multicultural setting; understanding and negotiating engineering cultures, whichrefers to the multinational/cultural differences in the actual practices and processes of technicalproblem solving; and navigating ethics, standards, and regulations, which occur when technicalcoordination or technical problem solving “happen in the midst of multiple – and
wider social issues including US immigrationpolicy, climate change, personal privacy, and military contracts. Companies including Microsoft,IBM, Tableau, Salesforce, Facebook, Google and Amazon have exhibited a variety of responsesto manage this growth in social justice related petitions, walk-outs, and protests from theiremployees. Responses have ranged from firing individuals to meeting demands at least in part.Study of these activities in the engineering writing classroom has multiple benefits in terms ofdeveloping student’s sense of deliberate purpose, persuasive communication skills andunderstanding of ethical limits within the field of engineering. This paper reports on the potentialvalue of using a case study depicting Amazon’s “cubicle
spreadthroughout the semester and weekly lectures which focused for five weeks on areas ofbiomedical engineering with the remaining lectures being divided between professionalism,ethics, and curriculum information. A final design project was included but it was entirelytheoretical with minimal instruction provided on the design process. The 2016 class included 51students who attending lecture together but were divided across 3 sections for workshops.In the fall of 2017, the course was restructured. The lectures were mostly recreated to focus on asemester-long design project, but a handful were maintained to cover professionalism, ethics,and curriculum information. Students attended weekly two-hour workshops instead of 3 persemester which were used to
Illinois at Urbana-Champaign. He received his B.S. in Computer Engineering from Sharif University of Technology in 2008 and his M.B.A. from University of Tehran in 2011. He has presented his research in past years at multiple conferences including American Evaluation Association, International Congress of Qualitative Inquiry, and Academy of Human Resource Development. In His dissertation, he focused on ethical decision making processes among computer majors. His research interests include ethics educa- tion, computer ethics, talent development, online learning, and evaluation. c American Society for Engineering Education, 2018
motivated efforts to expand the definition of student outcomes across countries. By the mid-1990s, ABET anticipated this need by shifting the accreditation basis toward outcomes ratherthan inputs, affecting engineering programs’ practices in the U.S. and in other countries, includedAustralia, Canada, Ireland, New Zealand, and the United Kingdom2. These criteria, widelyknown as EC2000, specified 11 learning outcomes (see Appendix 3)16: a) Five technical skills: Related to the development of students’ mathematical, scientific, and technical knowledge. b) Six professional skills: Those that emphasize communicating and working effectively on teams, besides the awareness of ethical and contextual
Paper ID #21686Environmental Considerations in Engineering: Students’ Goals and JourneysDr. Angela R. Bielefeldt, University of Colorado, Boulder Angela Bielefeldt is a professor at the University of Colorado Boulder in the Department of Civil, En- vironmental, and Architectural Engineering (CEAE). She is a licensed PE and has served as the ABET assessment coordinator in her department since 2008. Professor Bielefeldt’s research interests in en- gineering education include service-learning, sustainable engineering, social responsibility, ethics, and diversity.Dr. Greg Rulifson P.E., Colorado School of Mines Greg