emphasis in STEM-H related curriculum experiences at various colleges and universities across the U.S. Gwen’s work with NSF, USDOE, DOE, DOD, HRSA, and DOJ helps in providing the evaluative needs and expectations of federally funded grants with regard to accountability and compliance. In addition, she has served as a panel reviewer for NSF proposals for S-STEM and other EHR programs, GAANN, SIP, and EOC with the USDOE, and is currently an AQIP Reviewer and Peer Reviewer for the NCA Higher Learning Commission. As an administrator, Gwen has served Director of Assessment for 6 years and Executive Assistant to the President for one year at Rose-Hulman Institute of Technology. She has also served as Assistant to the
Paper ID #21603Sustainable Development Challenge For BMEProf. Joe Tranquillo, Bucknell University Dr. Joseph (Joe) Tranquillo is an Associate Professor at Bucknell University in the Department of Biomed- ical Engineering, He is also co-director of the Institute for Leadership in Technology and Management, co-director of the KEEN Winter Interdisciplinary Design Program, and chair of the Biomedical Engineer- ing Division of ASEE. Tranquillo has published three undergraduate textbooks and numerous engineering education publications, and has presented internationally on engineering and education. His work has been featured
Policy Initiative (NSSPI), Texas A&M University o Research interests include: Nuclear Counter-Terrorism, Nuclear Instrumentation Development, Exercise Development, Radiological Consequence Management, Environmental Health Physics • Defense sector: Roy Elmore, Deputy Division Leader, Department of Defense o Research interests include: Nuclear Nonproliferation, International Safeguards, Nuclear Forensics, Technology, and Policy Integration • NASA: Astronaut Stephen G. Bowen, o First nuclear submarine officer to be selected as an astronaut, veteran of STS- 126,132,133, and logged more than 40 days in seven spacewalksThe students were engaged with our guest
evolution of the climate in the department as well asthe demographics of the students, faculty, and staff. Although the numbers in Tables 1 and 2provide a baseline description of the composition of the department at this point in time, this isreally a snapshot of a dynamic and evolving population that would likely be better capturedthrough ecosystem metrics [11]. Additionally, we have submitted an NSF proposal that willsupport addressing DEI-related concepts (among other things) throughout a four-course labsequence in the core undergraduate curriculum. Through this and many complimentary efforts,we plan to put in place a framework through which students, faculty, and staff can co-create aclimate that fosters access and inclusion and leads to
dialogue, an educator engineer, in addition to being empathic, critical, and capable of dialoguing, must also be open to learn throughout his/her life. S/he must be willing to learn from the endless praxis’ exercise and even to be taught by the supposedly naive grassroots group s/he is serving: learning from the group’s knowledge, strategies of political action, worldviews and values, etc.Since a grassroots engineer is supposed to be able to develop popular education alongside – or asan integrant part of – the technical support they provide to grassroots groups, they must be aneducator engineer. Defined like that, it can be said that “grassroots engineer” and “educatorengineer” are synonyms.It is
third-party application for talent recruitment. This third-party applicationhas partnered with Textio that integrates the data-driven language insights for recruiters andhiring managers when they write job posts in Workday [62]. Textio is an online service basedon Gaucher et al. encoded list that helps to minimize the gender bias in job postings [49]. Itis likely that those job postings published through Workday empowered university recruitmentsites may have been gender neutralized through the tool offered in the application. Moreover,postdoc postings from non-academic institutions reported less masculine-coded, which mayencourage more female applicants for postdoc careers outside of academia. The feminine-codedpostings also had a slightly
, System Integration and LEAN Process Improvement (technical and business), Dr. Wickliff is passionate about Organizational Wellness and the Holistic Well- ness of individuals. She is also a professional Facilitator and Motivational Speaker. Dr. Wickliff earned a PhD in Interdisciplinary Engineering from Texas A&M University where she combined Industrial En- gineering and Organizational Development to conduct research in the area of talent management and organizational effectiveness. She also completed an executive MBA from the University of Texas-Dallas and a BS in mechanical engineering from the University of Houston. She is founder of a nationally rec- ognized pre-college initiative program, FreshStart, which has
to complete their 62.50% degree in 4 years Figure 7: FTIC students who anticipate graduating on timeThe students that anticipated to complete their degree on time reported that they wouldaccomplish that goal by (a) studying hard, passing their classes, and working hard; (b) taking asmany courses every semester as possible, such as 4 courses per a regular semester and 3 insummer, and not skipping semesters; (c) following their undergraduate major map andcompleting the required curriculum; (d) planning and managing their time efficiently; and (e)working with an advisor to create a career path and following the roadmap the
School of Engineering, University of Calgary, Canada. She teaches graphical, written and oral communi- cation in their first Engineering Design and Communication course taught to all 650 incoming engineering students. With co-editors Tom McKeag (San Francisco) and Norbert Hoeller (Toronto) she co-founded and designs ZQ, an online journal to provide a platform to showcase the nexus of science and design using case studies, news and articles (zqjournal.org). As an instructor, she was one of the recipients of The Allan Blizzard Award, a Canadian national teaching award for collaborative projects that improve student learning in 2004. In 2005, she was one of the recipients of the American Society of Mechanical Engineers
Lab. Currently, he is a Professor of Chemistry at Pasadena City College and runs an undergraduate research program attempting to infuse active learning in conjunction with remotely accessible microscopes into K-12 and university science curriculum. He is actively in- volved in bring micro nanotechnology technician programs to Community College campuses being a part of the Remotely Accessible Instruments in Nanotechnology (RAIN) Network and the Nanotechnology Professional Development Partnership (NPDP) Program.Prof. Jillian L Blatti, Pasadena City College Jillian L. Blatti is a chemistry professor at Pasadena City College. She was part of the algae biotechnology community as a graduate student at the
section of the Brain Box is the Raspberry Pi microcomputer [8] as shown in Figure 2 (a). Itcontains the program that will run the entire system. The Raspberry Pi is a Raspberry Pi 3 B+ and has aCPU of 1.4 GHz and a Quad core ARM Cortex-A53 [9]. 2 Figure 2. (a) Raspberry Pi 3 B+ microcomputer [8-9] and (b) Arduino Uno microprocessor [10]The Raspberry Pi 3 B+ unit has 1GB of SRAM and an integrated dual-band Wi-Fi, with 2.4GHz and5GHz options. It also has an ethernet port that will support up to 300Mbps and has Bluetooth capabilities[8-9]. It supports a micro-SD storage, and has a 40-pin GPIO header to allow additional connections. Italso has
. Nguyen, “The essential skills and attributes of an engineer: A comparative study of academics, industry personnel and engineering students.” Global Journal of Engineering Education, vol. 2, no. 1, pp. 65–74, 1998. [9] C. E. Vergara, M. Urban-Lurain, C. Dresen, T. Coxen, T. MacFarlane, K. Frazier, and T. F. Wolff, “Aligning computing education with engineering workforce computational needs: New curricular directions to improve computational thinking in engineering graduates,” in Frontiers in Education, San Antonio, TX, 2009. [10] G. Wilson, “Integrating Problem-based Learning and Technology in Education.” In Enhancing Thinking through Problem-based Learning Approaches, edited by O.S. Tan. Singapore
develop effective latent variable model and instrument that reflects the factors of college students’ retention.Dr. Carol S Gattis, University of Arkansas Dr. Carol Gattis is the Associate Dean Emeritus of the Honors College and an adjunct Associate Pro- fessor of Industrial Engineering at the University of Arkansas. Her academic research focuses on STEM education, developing programs for the recruitment, retention and graduation of a diverse population of students, and infusing innovation into engineering curriculum. Carol is also a consultant specializing in new program development. She earned her bachelor’s, master’s and Ph.D. degrees in Electrical Engineer- ing from the U of A and has served on the industrial
Academy and Women in Engineering Initiatives Fenn Academy • Stimulate and encourage 8th-12th grade students to explore engineering fields • Address the national shortage of students pursuing an engineering degree • Increase the number of underrepresented students • Assist teachers to enhance STEM lessons • Provide information for parents and counselors • Introduce students to college life and undergraduate engineering programBenefits: For Middle School and High Schools • Engineering Activity Day campus events • Engineer for a Day job shadowing program • Women Exploring Engineering program • Summer camp activities • Curriculum consultation • Small grants to teachers for engineering competitions/projects • Participation in
into smaller parts, andable to explain or determine what the root cause of a problem is.Keywords: affective domain, attitudes, undergraduate engineeringIntroductionLearning is an integral part of our lives. Each one of us learns the same things differently based onour preferred way of learning. We can learn by building mental models; through feelings,emotions, attitudes; and by physical movements. Based on this, the domains of learning are broadlycategorized as cognitive (knowledge), affective (attitudes), and psychomotor (skills) [1]. Eachdomain of learning focuses on one of three ways the brain can be engaged in learning. Thecognitive domain is focused on mental processes or thinking, the affective domain focuses onfeelings, attitudes, and
an engineering discipline? ● What would the curricula and courses look like? ● What would be the balance of education and engineering classes? ● How many engineering courses would be required for it to remain in the engineering school? ● What skills in education would be required, recommended, and/or beneficial? ● What would a Ph.D. qualifying exam be like? ● What other skills would be useful, such as math, statistics, qualitative and quantitative data analysis skills?In the end, Dr. Karan Watson worked with the curriculum experts in the Interdisciplinary Degreeprogram to determine what a degree plan would look like. The interdisciplinary program hasgraduated top engineering education people in the past
included a design sprint topractice design thinking, an introduction to the team’s selected focus area (presented by subjectmatter experts), and then proceeded with design thinking activities, further defining needs andinterests within the focus areas, ideating and then prototyping solutions, and developing actionplans. The curriculum included community-led, hands-on and practical exploration, ideation,prototyping, feedback and reflection sessions that resulted in a conceptual design conceived bythe community team.4.3. Symposium MethodologyOrganizing TeamThe organizing team for this symposium included several members of the IUDC, each of whomis a principal author of this work: 3 professors (Marcel Castro, Electrical Engineering;Christopher
. R., & Litzinger, T. A. (2021). An extension of the Thermodynamics Conceptual Reasoning Inventory (TCRI): measuring undergraduate students’ understanding of introductory thermodynamics concepts. International Journal of Science Education, 43(15), 2555–2576. https://doi.org/10.1080/09500693.2021.197584710. Mulop, N., Yusof, K. M., & Tasir, Z. (2012). A Review on Enhancing the Teaching and Learning of Thermodynamics. Procedia - Social and Behavioral Sciences, 56, 703–712. https://doi.org/10.1016/j.sbspro.2012.09.70611. Klein, S. A. (1993). Development and Integration of an Equation-Solving Program for Engineering Thermodynamics Courses. Computer Applications in Engineering Education, 1(3), 265–275.12
areas compared to biological sciences and physical sciences.Minnesota has a large number of academically-talented and financially-needy students. In 2008,only 6.9% of bachelor’s degrees awarded in Minnesota were in STEM according to theMinnesota Office of Higher Education. The financial burden is a significant obstacle for studentsconfronting a challenging curriculum that needs more time commitment.Saint Cloud State University (SCSU) is the second largest in the system of public MinnesotaState Colleges and Universities (MN State). SCSU’s mission is to prepare students for life, workand citizenship in the twenty-first century to positively transform students and the communitiesthrough the discovery, applied knowledge, and creative interaction
institutional policies (or lack thereof), professional and personal networks, interactionswith colleagues and students, and articulated (or not) expectations all combine to createparticular climates and experiences for faculty at institutions of higher education throughout theUnited States in 2020. Those show gendered and race-based patterns. Many of the activities thatare integral to the reputation and function of an organization are often performed by women andfaculty of color. These activities, especially administrative and curriculum-based ones, tend torequire time and expertise but are not typically rewarded in traditional academic promotionstructures [1, 33, 6, 34, 31, 35]. In fact, research indicates that women faculty overwhelminglyare tasked
academic excellence and contributions to research have been recognized through several prestigious awards. In 2022, she was honored with both the CoST Graduate Rising Scholar Award and the NC A&T Graduate Rising Scholar Award. These accolades highlight her outstanding scholarly achievements and her commitment to advancing knowledge in her field. In 2024, Mercy’s dedication to education and her exemplary performance as an instructor were acknowledged when she received the Senior Graduate Teaching Assistant Award. This award underscores her effectiveness as an educator and her ability to inspire and mentor students. In addition to her academic and teaching roles, Mercy has significantly contributed to the broader
Paper ID #39226A Framework for the Development of Online Virtual Labs for EngineeringEducationDr. Genisson Silva Coutinho, Instituto Federal de Educac¸a˜ o, Ciˆencia e Tecnologia da Bahia Genisson Silva Coutinho is an Associate Professor at the Department of Mechanical Engineering and Materials at the Federal Institute of Science and Technology of Brazil. Genisson earned his Ph.D. in Engineering Education from Purdue University. His specialties are engineering education research, ed- ucational innovation, laboratory education, product design and development, finite element analysis, ex- perimental stress analysis, product
previously served as Associate Dean for Undergraduate Studies in the School of Engineering at Virginia Commonwealth University and was a faculty member and administrator at the University of Nebraska-Lincoln (UNL). Her research interests include: Teamwork, International Collaborations, Fac- ulty Development, Quality Control/Management and Broadening Participation. She is an honor graduate of North Carolina A&T State University, where she earned her BS in Mechanical Engineering, in 1988. In 1991 she was awarded the Master of Engineering degree in Systems Engineering from the University of Virginia. She received her Ph.D. in Interdisciplinary Engineering from Texas A&M University in 1998. She is the recipient
Paper ID #43385A Quantitative Exploration of Geographic and Demographic Variance Transfer-StudentCapital Assets and Support for Pre-Transfer Engineering StudentsDr. Kristin Kelly Frady, Clemson University Kristin Frady is an Assistant Professor and Founding Program Director of the Human Capital Education and Development Bachelor of Science with a joint appointment between the Educational and Organizational Leadership Development and Engineering and Science Education Departments. Her research focuses on innovations in workforce development at educational and career transitions emphasizing two-year college and secondary
, the college successfully developed andimplemented a program curriculum involving day and night classes in electrical engineering andcomputer engineering. The curriculum program consists of 11-week courses and allows aflexible schedule for students to successfully complete an ABET-accredited degree in eitherBSEE or BSCE. During 2017, CoE proudly received an ABET re-accreditation for six yearswith no required interim reports.In 2015, the University tasked the CoE to develop a strategic plan in delivering onlineundergraduate and graduate engineering courses. Starting in April 2015, the college embraced aflipped learning approach for future and online delivery of undergraduate engineering courses.One reason for adopting flipped learning concerns
in conjunction with AugSTEM teammembers. Bringing various stakeholders together and convening at the two-year campus wasparticularly valuable for program evaluation.1. Knowledge Generation MethodsIn addition to ongoing formative and summative evaluation described above, our projectincluded a research component to generate knowledge about the lived experience of STEMstudents, influences related to social identity and institutional characteristics that contribute topersistence in an urban liberal arts college.2.1 Conceptual Frameworks Our qualitative research was guided by two overall conceptual frameworks, one from highereducation and one from social work. First, we drew on Nora’s student integration model [10],which views students as moving
inacademia was a concern that was brought up by multiple participants. More specifically, theparticipants noted that there are inconsistencies in what credits transfer from military experienceinto an engineering curriculum. A couple of the assets that were brought up during the sessionincluded, “vet populations are diverse and understand diversity,” and that student veterans are“very task-oriented compared to peers.”Funding. Another concern for SVEs surrounds funding. Some of the participants brought up the“lack of transparent alternate funding,” and “only 36 months of funding (initially)”. Oneparticipant brought up “GI Bill Logistics” as a barrier to academic success for SVEs. Thiscomment sits in juxtaposition with the comments noting VA
to achieve an experience that enhances their qualityknowledge and skills during their capstone projects. As Wm. A. Wulf, president of the NationalAcademy of Engineering (NAE), has noted, for the United States to remain competitive in a globaltechnological society, the country as a whole must take serious steps to ensure that we have adiverse, well trained, and multicultural workforce [2]. To support undergraduate minority studentsenrolled in STEM fields, TAMUK promotes the Senior Design / Capstone Mini-Grant (SDMG) tosenior students developing capstone projects as an integral part of their course program to completeits academic degree. The SDMG activity has an objective to help participants improving the seniordesign/capstone project
. Ressler P.E., United States Military Academy Stephen Ressler, P.E. Ph.D., Dist.M.ASCE, F.ASEE is Professor Emeritus from the U.S. Military Academy (USMA) at West Point. He earned a B.S. degree from USMA in 1979, a Master of Science in Civil En- gineering from Lehigh University in 1989, and a Ph.D. from Lehigh in 1991. As an active duty Army officer, he served for 34 years in a variety of military engineering assignments around the world. He served as a member of the USMA faculty for 21 years, including six years as Professor and Head of the Department of Civil and Mechanical Engineering. He retired as a Brigadier General in 2013. He is a registered Professional Engineer in Virginia, a Distinguished Member of
of novice teachers’ epistemological framing ofengineering learning and teaching. The inclusion of engineering design at all grade levels in theNext Generation Science Standards calls for efforts to create learning opportunities for teachersto learn to teach engineering. In our research on the role of engineering in elementary teacherpreparation, we ask, what learning goals do new elementary teachers take up when asked to doengineering design themselves, and what learning goals do they establish when setting upengineering design tasks for students?We conducted an interpretive comparative case study with two purposefully selected cases,chosen to unpack contrasting epistemological framing of engineering. Ana and Ben participatedin the same