Engineering and Science (www.craftofscientificwriting.com) and the Assertion-Evidence Approach (www.assertion-evidence.com).Mrs. Melissa G. Kuhn, Old Dominion University Melissa G. Kuhn is a PhD Student in Educational Psychology and Program Evaluation at Old Dominion University. Additionally, she works at the Batten College of Engineering and Technology in educational projects and program coordination. c American Society for Engineering Education, 2019 1Work In Progress (WIP): Common Practices in Undergraduate Engineering Outreach Joanna K. Garner The Center for Educational
dimensions materials and the characterization and modeling of their material properties. c American Society for Engineering Education, 2019 Work in Progress: The Attributes of a Prototypical Leader As Viewed by Undergraduate Engineering StudentsIntroductionThe professional development of leadership skills by undergraduate engineering students is keyto a successful long-term career. Increasing diversity and inclusion in leadership is also criticalfor technology companies as they become global enterprises. Within engineering education, theNational Science Foundation funded a multiyear research project lead by the American Societyof Engineering Education beginning in 2014 on “Transforming
and connected to the database. In thiseffort, we aim to investigate academic policies in engineering programs to find the trends andchanges across multiple years. The findings will lead to the development of a complete databaseof American academic policy information that shall be available in the future for otherresearchers to use for academic purposes. By connecting this information to a database likeMIDFIELD, researchers can identify how the graduation rates, retention rates, studentdemographics and other data collected by MIDFIELD is affected by the changes in institutions’academic policies. In this project, we highlight academic policies based on two different aspects:matriculation models and good standing policies among institutions
a nineday period. Each day’s lesson lasted 2 hours, with a total of 18 hours for the entire unit. Fortyseven students participated in the STEAM project over two years. The unit consisted of lessons in neuroscience, sensory impairment, ethics, circuitry, programming Arduino microcontrollers, and the engineering design process. Students then spent the last three days of the unit engaging in the creative process of planning, building, and testing a model of a device that substituted one sense with another (see Appendix A for an outline of the lessons). Two neuroscience lessons involved the discussion of sensory inputs, processing through the central nervous system, and motor outputs. Since the class was multigrade, 7th and 8th grade
develop and expand the nation-wide Summer Engineering Experiences for Kids (SEEK)program. In partnership with education researchers from Virginia Tech and Purdue University,NSBE aims to expand participation in SEEK using the research-to-practice cycle to identify anddevelop best practices moving forward. This paper summarizes preliminary results from the firstyear of the three-year project, Strengthening the STEM Pipeline for Elementary School AfricanAmericans, Hispanics, and Girls by Scaling Up Summer Engineering Experiences. Findingsfrom this research suggest that over the course of the SEEK program students showed increasesin their conceptual knowledge (i.e., math, science, and engineering) as well as their attitudestowards these disciplines
training. She teaches undergraduate courses related to environmental management, energy and fundamentals of industrial processes at the School of Engineering, UNAB. She currently is coordinating the Educational and Academic Innovation Unit at the School of Engineering (UNAB) that is engaged with the continuing teacher training in active learning methodologies at the three campuses of the School of Engineering (Santiago, Vi˜na del Mar and Con- cepci´on, Chile). She authored several manuscripts in the science education area, joined several research projects, participated in international conferences with oral presentations and key note lectures and serves as referee for journals, funding institutions and associations
-enhancing first-year curriculum, which includes Self-Management and Leadership, First-Year Engineering Projects (design), Engineering Explorations through Physics, and mathematics courses. The classes are designed to immerse students in authentic engineering practices from the start of the undergraduate experience, and have evolved to feature an asset-based, capacity-building mindset instead of assuming that students are deficient or lacking in preparation and thus require remediation to succeed. Retention: GS includes an intentional focus on fostering learning communities and supporting students’ identity development as engineers and full members of a community that cares about them as whole people. Multiple methods and
Paper ID #18097Stickiness of Nontraditional Students in EngineeringMr. William Barrett Corley, University of Louisville William B. Corley, M.S., is the graduate research assistant on this project. He is an experimental psychol- ogy (cognitive concentration) graduate student with the Department of Psychological and Brain Sciences at University of Louisville. He has a bachelor’s degree in psychology and a master’s degree in experimen- tal psychology with a cognitive psychology concentration. His background includes several educational research projects and extensive training in statistical methods.Dr. J. C. McNeil
explore; let the kids figure it out.BGCA is committed to closing the opportunity gap in STEM with innovative and creativeprograms, activity ideas and resources for Clubs and the youth they serve. BGCA has increasedits STEM curriculum in the last 5 years, called DIY STEM. After-school and summer learningenvironments provide unique opportunities to advance STEM knowledge and increase interest inSTEM-related careers. Using a cross-disciplinary approach that channels young people’s naturalcuriosity into the design process inherent in the arts, BGCA’s STEM programs empower youthto create new solutions to real-world challenges. This project-based approach develops criticalthinking, problem solving, and other 21st century skills critical to success in
, he supports over 230 cadets in the ABET accredited systems engineering major. Systems Engineering is currently the largest engineering major at USAFA, administered by seven departments with cadets participating in over 30 engineering capstones projects. Trae received his undergraduate degree in Systems Engineering in 2012 from USAFA with a focus in Electrical Engineering. He is a distinguished graduate from the Air Force Institute of Technology receiving a Master of Science in Systems Engineering in 2018. Trae serves in the USAF as a developmental engineer and holds Department of Defense certifications in systems engineer- ing, science and technology management, test & evaluation, and program management. He
Engineering Education, 2019miniGEMS 2018: A Mixed Methods Study Exploring the Impact of a STEAM and Programming Camp on Middle School Girls’ STEM Attitudes Abstract miniGEMS (Girls in Engineering, Mathematics, and Science) is a free two-week summerSTEAM and programming camp for middle school girls launched in 2015. The goal ofminiGEMS is to address the female gender gap and introduce more female students into STEMfields through project-based learning experiences. This study utilized mixed methods to identifythe effectiveness of a STEM enrichment summer camp and explore how middle school girls’STEM attitudes changed after participating in miniGEMS. A pre- and post- survey wasconducted with 92
of the ten winning teams in Verizon’s ’5G EdTech Challenge’, contributing in the development of several educational virtual reality applications.Dr. Nikos Makris, University of Thessaly Nikos Makris is a Research Engineer working for University of Thessaly, Greece. He received his B. Eng. in 2011, his M. Sc. degree in Computer Science and Communications in 2013 and his PhD in Electrical and Computer Engineering in 2019 from the same department. Since 2011, he has been participating in several collaborative research projects with University of Thessaly. During the summers of 2018 and 2019, he was a visiting scientist in New York University (NYU) working in the outreach activities of the COSMOS project. His
approach can help studentsdevelop their modeling skills across a variety of modeling types, including physical models,mathematical models, logical models, and computational models. Physical models (e.g.,prototypes) are the most common type of models that engineering students identify and discussduring the design process. There is a need to explicitly focus on varying types of models, modelapplication, and model development in the engineering curriculum, especially on mathematicaland computational models.This NSF project proposes two approaches to creating a holistic modeling environment forlearning at two universities. These universities require different levels of revision to the existingfirst-year engineering courses or programs. The proposed
full offering of our curriculum through a new honorssection of a large introductory bioengineering course.The introductory course aims to provide broad exposure to several areas of research inbioengineering such as cancer diagnostics, medical device development, regenerative medicine,global health, and synthetic biology. The course emphasizes critical reading of scientificliterature and technical writing, and broadly covers the engineering design process, creativeproblem-solving techniques, engineering ethics, social constraints, and other design principles.Students complete an end-of-course team project where they design a solution to a global healthproblem of their choice.Learning ObjectivesWe aim to engage early engineering students in
the Federal Aviation Administration (FAA).KeywordsSTEM, computational thinking, drones, programming, middle schoolIntroductionActive learning has a positive impact on students’ cognitive engagement and thus on learning1-3.Active learning can be in many forms such project-based learning, collaborative learning, andcooperative learning. However, an important element to consider is that the active-learningstrategy must support cognitive engagement to foster deeper learning. Authentic learningenvironments have been shown to particularly effective for cognitive engagement of learners. Thetwo important attributes of an authentic learning environment are real world relevance andcompeting solutions to the problems being solved4. More recently, the
“report a lowersense of belonging” [34] in comparison to their white and male counterparts [35] – [37].Belonging to STEM fields is dependent on self-efficacy, which is the “confidence in one’sability to successfully perform a given task” [34]. For a mentee to feel positive about their field,the mentee’s perception of the relationship with the mentor is significant. Prunuske et. al. [30]determined that mentees’ confidence improved when they actively participated in researchprojects and acquired “the skills necessary for professional socialization.” They also determinedthat the personality of the mentor was more significant than the research project. In addition, thementees wanted mentors who would communicate and engage with them. When studying
studies from the Department of Computer Graphics Technology. He has re- ceived federal, regional, and international grants for his work. c American Society for Engineering Education, 2018 A Comparative Study on Affordable Photogrammetry ToolsAbstractThe objective of the Project MANEUVER (Manufacturing Education Using Virtual EnvironmentResources)1 is to develop an affordable virtual reality (VR) framework to address the imminentdemand for well-trained digital manufacturing (DM) professionals. One important part of ProjectMANEUVER involves studying, evaluating, and identifying cost-efficient ways to generate 3D solidmodels for use in VR frameworks. To this end, this paper explains the research effort to
Students in Colleges of EngineeringIntroductionCommunication skills used by all engineers include writing, reading, speaking, and listening.Whereas reading and listening focus on comprehension, writing and speaking are forms ofexpression. Engineers employ technical writing with the goals of being accurate, brief, clear,and easy to understand. Engineers use many forms of written communication: on the job, theycompose technical memoranda, project reports, and proposals for new business; while ingraduate programs, they may assist professors with technical reports and publishable articles,while individually writing their thesis or dissertation. Written English has many conventionsintended to impose order on the chaotic English language. While the
, scholars havereported that the interactions with like-minded peers helped them achieve success in theirundergraduate career at NC State University.AcknowledgementsThis program was supported by the National Science Foundation under grant DUE# 1259630.The authors thank all the students and mentors that have participated in this project, the input inthe early phase of the project with Dr. M. Fuentes, Dr. A. Mitchell, Dr. J. Picart, Dr. C. Zelnar,and Dr. M. Stimpson. We are thankful for the support and assistance of the Dean of the Collegeof Engineering, NCSU College of Engineering Minority Engineering Program, NCSUEngineering Place and the local Society of Women Engineering (SWE) Chapter.References 1. NC State STEM Scholars https://www.ece.ncsu.edu
several NSF-funded projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering Design Across Navajo Culture, Community, and Society” and ”Might Young Makers be the Engineers of the Future?,” and is a Co-PI on the NSF Revolutionizing Engineering Departments grant ”Additive Innovation: An Educational Ecosystem of Making and Risk Taking.” He was named one of ASEE PRISM’s ”20 Faculty Under 40” in 2014, and received a Presidential Early Career Award for Scientists and Engineers from President Obama in 2017. Dr. Jordan co-developed the STEAM LabsTM program to engage middle and high school students in learning science, technology, engineering, arts, and math concepts through designing and
Results Cafazzo et al. (2012) Positive Rose et al. (2013) Positive Stinson et al. (2013) PositiveCrowdsourcing: The word crowdsourcing is the combination of two words crowd andoutsourcing which means outsourcing to the crowd (Schenk et al., 2011). According to Howe(2006), “Crowdsourcing is the act of taking a job traditionally performed by a designated agent(usually an employee) and outsourcing it to an undefined, generally large group of people in theform of an open call.” Therefore, motivational factors have a great influence on participants totake part in crowdsourcing projects, namely, gamification
Paper ID #25715Board 81: Work-in-Progress: Building an Inclusive Faculty Community throughthe Teaching and Learning AcademyDr. Jianyu ”Jane” Dong, California State University, Los Angeles Jianyu Dong is a professor in electrical and computer engineering at CSULA and currently serves as the Associate Dean for the College of Engineering, Computer Science and Technology. Her area of expertise is video compression/communication, multimedia networks, QoS, etc. She has been engaged in multiple projects and initiatives in engineering education to increase the success of students from underserved low-income communities.Dr. Emily L
Paper ID #16453Attracting Students to Programming via Physical ComputingProf. Alka R Harriger, Purdue University, West Lafayette Alka Harriger joined the faculty of the Computer and Information Technology Department (CIT) in 1982 and is currently a Professor of CIT. For the majority of that time, she has been actively involved in teaching software development courses. From 2008-2014, she led the NSF-ITEST funded SPIRIT (Surprising Possibilities Imagined and Realized through Information Technology) project. Since October 2013, she has been co-leading with Prof. Brad Harriger the NSF-ITEST funded TECHFIT (Teaching
Paper ID #14642Community Service as a Means of Engineering Inspiration: An Initial Inves-tigation into the Impact of the Toy Adaptation ProgramMs. Molly Y Mollica, The Ohio State University Molly Mollica earned her BS in Biomedical Engineering from Ohio State University in 2014. She is currently a Master’s student in Mechanical Engineering with a research focuses in bionanotechnology, mechanobiology, and engineering education. Molly has been working with the Toy Adaptation Project since its start at OSU in 2013.Dr. Rachel Louis Kajfez, The Ohio State University Dr. Rachel Louis Kajfez is an Assistant Professor of Practice in
Paper ID #15549Adding Meaningful Context to Robotics Programs (Work in Progress)Dr. Michele Miller, Michigan Technological University Dr. Michele Miller is a Professor of Mechanical Engineering at Michigan Technological University. She teaches classes on manufacturing and does research in engineering education with particular interest in hands-on ability, lifelong learning, and project-based learning.Dr. Nina Mahmoudian, Michigan Technological University Dr. Nina Mahmoudian is an assistant professor in the Mechanical Engineering-Engineering Mechanics Department at Michigan Technological University. She is the founding
Leadership within the Ira A. Fulton College of Engineering and Technology at Brigham Young University (BYU). The center provides oversight for leadership development and inter- national activities within the college and he works actively with students, faculty and staff to promote and develop increased capabilities in global agility and leadership. His research and teaching interests in- clude developing global agility, globalization, leadership, project management, ethics, and manufacturing processes. Gregg has lived in numerous locations within the USA and Europe and has worked in many places including North America, South America, Europe, Asia, and Africa. Prior to joining BYU, Gregg worked for Becton Dickinson, a
, the advancement of theories around transportation systems health, and the exploration of partnering strategies for improved project delivery outcomes. Smith-Colin has provided research support to the Global Engineering Leadership Development Minor, and has served as a one-on-one coach and grand challenges facilitator for the Leadership and Education Development (LEAD) program for the past 3 years. In fall 2016, she will serve as an instructor for the leadership development sections of the GT 1000 first year seminar. Smith-Colin is a two-time recipient of the Dwight David Eisenhower Transportation Fellowship, and was honored with the 2014 WTS/CH2M Hill Partnership Scholarship. She and her colleagues were awarded the
things.Methodological overview The methodological approach for this project came about via both theoretical (literature)and practical considerations. While the cultural construction literature tends to emphasize theoryand analysis, we tried to assemble a robust and consistent methodological approach to investigatecultural construction in a particular setting. In McDermott’s early writing at the time of his datacollection (1970’s) he aligned himself methodologically with three primary traditions:ethnography, ethnomethodology, and discourse/interaction analysis17,18,19. As an investigation ofculture, the work relies on ethnographic methods and approaches, such as the incorporation ofmultiple qualitative data streams, ethnographic field noting20, and one
(LMSS).The initial interview with each engineer was semi-structured and focused on employmenthistory, career plans and aspirations, family background, experience of engineering coursework,and other similar themes. For those engineers with more than one interview, the interviewsconsisted of learning about the engineer’s current work projects, work environment and closecolleagues; and assessing the engineer’s attitude about his/her work activity and workplace socialenvironment.The analysis was conducted in several steps. First, the interviews were professionally transcribedand then thematically coded by Vinson. From these interviews Vinson was able to reconstructthe work history of each engineer, accounting for why engineers left or returned to
Technology Education (MSTE) at the University of Illinois. Before coming to MSTE, Jana spent 34 years as a public school classroom teacher. She currently coordinates education and outreach for four NSF/DOE funded energy and cyber related projects. She helps engineers and research scientists connect their work to educators, consumers, and students. She is author of curriculum modules in computer science, mathematics, and science including, Discovering Computer Science & Programming through Scratch and The Power of the Wind, published as part of the National 4-H STEM Initiative.George Reese, University of Illinois, Urbana-Champaign George Reese is the Director of the Office for Mathematics, Science, and Technology