and students in completing challenging real-world assignments. • Allow students to choose accelerated learning options to earn relevant industry credentials. • Combine a college-career ready academic core with challenging technical studies that will prepare students to live and work in a global workforce and marketplace. • To impact the health and wealth of the students and community that services through sister schools in Balfate, Honduras. • To conduct international professional development, teacher-to-teacher via Zoom. Introduce the Global Sister SchoolsSTEM Projects involvementThe Global Sister School project was developed to connect schools with similar time zones. Forexample, in the USA as our primary
students in eachclass expressed negative perceptions of volunteering in the beginning but changed their opinionsafter listening to their peers’ positive statements.A survey was then conducted asking students to rank their reasons for volunteering. The reasonswere classified into six motivations or psychological functions for student volunteering [14, 15]:(1) Value Function, (2) Social Function, (3) Understanding Function, (4) Career Function, (5)Protective Function, and (6) Enhancement Function [16].As shown in Table 1, 15 out of 55 (27%) of the students ranked Career Function, developing orincreasing leadership skills, as the number one reason for volunteering. Value and Social functionswere each ranked second. 20% of the students saw
makes. Table 2 showslittle variation in the statistics between the successful students and those still looking.Included in the interview data is the impactful observation that the successful students during theEDP semester had some form of direct interaction with the hiring company outside the standardapplication process. These interactions included speaking with the company at job fairs orhaving previously worked with/known someone within the company. This is consistent with the2019 survey by the National Association of Colleges and Employers showing employersconsider career fairs the most effective recruiting technique [13]. The interviews indicate a needto adjust the broader EDP semester schedule to drive a stronger focus on and earlier
Defense Cybersecurity Assurance ProgramAimee T Ulstad P.E., The Ohio State University Aimee Ulstad, P.E is an Associate Professor (Clinical) in the Integrated Systems Engineering Department at The Ohio State University. Prior to joining the faculty at OSU, Aimee was an industry professional in various engineering roles for over 30 years. Aimee received her degrees in Mechanical Engineering and Masters in Business Administration from Ohio State. She began her career as a packaging equipment engineer at Procter and Gamble, then moved to Anheuser-Busch where she worked for over 27 years. She worked as project manager, engineering manager, utility manager, maintenance manager, and finally as the Resident Engineer managing
, Technology, Engineering, and Math (STEM) education and retentionof these students in STEM careers. While many first-year college engineering programs and highschools with pre-engineering curriculum have incorporated spatial visualization training intotheir courses, there is no reason why spatial visualization training could not start at elementaryschool. At the older age groups, the Purdue Spatial Visualization Test: Rotations (PSVT:R),which is recognized as a gold standard assessment tool, is used to measure students’ learninggains in their spatial skills. However, it not suitable for elementary school grades. Researchers atthe University of California, San Diego developed an assembly pre- and post- test based upon atimed Lego™ exercise which would
Paper ID #30650Development of an Academic Dashboard for Empowering Students to beAdaptive Decision-MakersDr. Marisa K. Orr, Clemson University Marisa K. Orr is an Assistant Professor in Engineering and Science Education with a joint appointment in the Department of Mechanical Engineering at Clemson University. Her research interests include student persistence and pathways in engineering, gender equity, diversity, and academic policy. Dr. Orr is a recipient of the NSF CAREER Award for her research entitled, ”Empowering Students to be Adaptive Decision-Makers.”Baker A. Martin, Clemson University Baker Martin is a
purely financial support, the selected students received the support of aStudent Success Coach. The Success Coach was a half-time employee completely dedicated tomonitoring and supporting these 20 to 24 students.Support from provided by the Coach included: • Student support services: Provides aggressive individualized academic advising and career support through case management and counseling • One-on-one meetings: both electronic and in-person • Academic monitoring: use of mid-term grade sheets to monitor progress; mandatory meetings with the coach before dropping any classes • Resource guides: on career exploration, resume creation, external scholarships and internship searches created and distributed to students
, to inform and assess culturally-relevant,hands-on, interactive activities focused on engineering broadly. Working closely with 10museum partners and educators in Ontario, Portland, Los Angeles, Fort Lauderdale, Detroit,Miami, Ann Arbor, Boston and Buenos Aires, kits were tested, feedback was collected, andevaluation results were used to continuously iterate on the kits to ensure they work well indiverse settings.Perspective(s) or theoretical framework A national crisis will emerge if the United States cannot amplify the number anddiversity of K-12 students who pursue degrees and careers in engineering. Many of society’schallenges impact a broad spectrum of peoples, communities, and systems. Addressing thesechallenges require
at Rowan and UMass, she developed a passion for undergraduate education. This passion led her to pursue a career as a lecturer, where she could focus on training undergraduate chemical engineering students. She has been teaching at UK since 2015 and has taught Fluid Mechanics, Thermodynamics, Computational Tools and the Unit Operations Laboratory. She is especially interested in teaching scientific communication and integration of process safety into the chemical engineering curriculum.Dr. Renee Kaufmann, University of Kentucky, College of Communication and Information, School of Informa-tion Science c American Society for Engineering Education, 2020Learning to talk the talk – Preparing
between high school and college, often in a career or in the military.The course summaries for the four courses in question are shown below in Figures 1-4.Figure 1. MECH 310 Course DescriptionFigure 2. MECH 311 Course Description © American Society for Engineering Education, 2020 2020 ASEE Annual Conference and ExpositionFigure 3. MECH 340 Course DescriptionFigure 4. MECH 415 Course DescriptionImportantly, the authors all kept the number of homework problems assigned over the entiresemester very nearly the same, regardless of homework frequency. Weekly homeworkassignments would have three or four problems each, while daily homework assignments wouldonly have one. This results in roughly the same
fail” were transformed by positivefaculty interactions resulting in better integration of students at their college and academicsuccess.A proven method to increase student/faculty interactions is through undergraduate researchprojects [14]. As a result of increased student-faculty interactions, undergraduate researchenhances interest in STEM careers and graduate school [15, 16] and has been shown to increaseretention rates in science and engineering programs [17]. The Council on UndergraduateResearch [18] reports the benefits of undergraduate research to include the development ofmentoring relationships with faculty, increases in retention and graduation, better understandingand appreciation of the research process, and communication, problem
visualization. He is a founding developer of the CATME system, a free, web- based system that helps faculty assign students to teams and conduct self- and peer-evaluations. He is a co-author of the Engineering Communication Manual, an undergraduate text published in 2016 by Oxford Univ. Press. He can occasionally be found playing guitar at a local open mic.Dr. Marisa K. Orr, Clemson University Marisa K. Orr is an Assistant Professor in Engineering and Science Education with a joint appointment in the Department of Mechanical Engineering at Clemson University. Her research interests include student persistence and pathways in engineering, gender equity, diversity, and academic policy. Dr. Orr is a recipient of the NSF CAREER
engineering from Tennessee Technological University. Additionally, he has six years of industrial experience as a Senior Engineer and 18 years of academic experience as a professor, Associate Professor, and Assistant Professor. Foroudastan’s academic experience includes teaching at Tennessee Technological University and Middle Tennessee State University in the areas of civil engineering, me- chanical engineering, and engineering technology. He has actively advised undergraduate and graduate students, alumni, and minority students in academics and career guidance. Foroudastan has also served as Faculty Advisor for SAE, Mechanical Engineering Technology, Pre-engineering, ASME, Experimental Vehicles Program (EVP), and Tau
program, and an instructor in computer science, teaching various CS courses. Her current research interests are related to teaching in STEM fields. She advises the cybersecurity club, and is a member of several organizations including OWASP-Portland Chapter. Dr. Dvorak is passionate about teaching, technology, career pathways and student success.Dr. Heather Dillon, University of Portland Dr. Heather Dillon is an Associate Professor in Mechanical Engineering at the University of Portland. She recently served as the Fulbright Canada Research Chair in STEM Education. Her research team is working on energy efficiency, renewable energy, fundamental heat transfer, and engineering education. Before joining the university
may not have a lot of discretionary time to devoteto formal out-of-school STEM (science, technology, engineering, and mathematics) programs,which foster the subsequent pursuit of STEM careers.1 Moreover, working youth may not haveextra disposable income to devote to many STEM activities such as attendance at sciencemuseums or the purchase of STEM magazines and materials, which also foster the pursuit ofSTEM careers.2, 3 High school students’ workplaces may thus be promising sites for fosteringequitable STEM learning because they are sites inhabited by many youth who do not have thesame access to formal STEM learning opportunities as youth from more affluent families.The purpose of this study was to identify the types of engineering-related
disadvantaged andacademically talented undergraduate students in the Mechanical Engineering Department from2009 to the present. The NSF funded S-STEM project focuses resources on financial support,coupled with curricular and co-curricular activities designed to facilitate student degreeattainment, career development, employability in STEM-related jobs, and enrollment in graduateschool. In addition, our S-STEM program proactively implements engineering researchactivities, including in-depth lab tours, seminars, REUs, research conference support, featuringresearch/internship on our website, and presentations to recruit students for research, etc. In this study, we present preliminary data that reveal the attitudes and perceptions of thecurrent 25
employers’ desired competencies, identified employability skills valuable for entry-level technician positions. The employers who participated in this study represented the growingAM industry sub-sectors of timber, pipeline, and textiles. Our findings suggest that ruralemployers face challenges common to all AM employers: 1) the need for workplace skills, suchas a strong commitment to teamwork and ongoing professional development; and 2) difficultiesin encouraging employees’ transitions from job to career pathway, thus increasing their in-fieldpersistence. These results have implications for educational institutions that offer AM degreesand for graduates who seek rural employment in the AM field.Acknowledgements: This material is based upon work
,mechanical, or other disciplines. Undergraduate engineering students may take the FE exam intheir senior year. For many civil engineering seniors, passing the FE exam is a requirement forgraduation and often a condition of employment. For other disciplines, the FE exam is optionalbut recommended for students interested in pursuing an engineering career where protection ofpublic health and safety are of concern.Background/Literature ReviewClean water, reliable energy, safe transportation, and life-saving medical equipment are just afew ways that engineers make the world better and safer for all of us. By law, only a licensedengineer may prepare, sign and seal, and submit engineering plans and drawings to a publicauthority for approval. Professional
theiracademic careers is limited to personal projects and small in-class endeavors. Oftentimes, because ofstrict course prerequisites and limited offerings, students must wait until their senior year to participatein meaningful design experiences and apply their knowledge and skills. This combination can severelyhamper or prevent some students from participating at all. Design teams can provide opportunities tobreak down these barriers for many students, enabling them to participate earlier or more broadly intheir academic careers than may have been possible otherwise.The AIAA DBF Competition provides students with an opportunity to solve problems that they likelywouldn’t encounter in any other context, and in the process gain valuable experience
classroom. Forundergraduate engineering students, working with and mentoring younger students is a way todevelop strong interpersonal, communication, and leadership skills. Bit Project consolidateslogistics for outreach into one organization and gives students a chance to apply undergraduateengineering education into real-life scenarios. The various outreach events create a platform forstudents who want to take time to connect with their communities. Promoting undergraduatestudents’ involvement in primary education encourages students to pursue professional educationdegrees and provides prospective educators with classroom experience.Due to the rise of technical careers and increasing demand for job applicants with strong STEMbackgrounds
. c American Society for Engineering Education, 2020 Promoting Multidisciplinary Industry-Sponsored Capstone ProjectsAbstract:Engineering design problems are intricate in nature and require not only skills that involveinterdisciplinary education but also knowledge across disciplines. To promote and encouragemultidisciplinary projects, the School of Science, Engineering, and Technology at Penn StateHarrisburg has developed a model that facilitates the formation of teams to work on industry-sponsored capstone projects. These projects offer students invaluable educational benefits andhelp in preparing them for their future careers. This paper provides details about our approach toseek industry-sponsored projects and the process we follow to
ASEE St. Lawrence Section Conference, 2018 Cornell University April 20-21, 2018 INTERDISCIPLINARY ENGINEERING RESEARCH EXPERIENCE FOR UNDERGRADUATES Jikai Du State University of New York College at Buffalo Engineering Technology Department Buffalo, NY 14222AbstractUndergraduate research not only can give students the opportunity to apply classroomknowledge to real world situations, but it also help them to explore career directions. In thispaper, an undergraduate student in Engineering Technology Department at SUNY College atBuffalo conducted energy
Paper ID #28922”Should we consider transforming the definition of technological andengineering literacy. . . ”Prof. Carl O. Hilgarth, Carl O. Hilgarth, M.S., is immediate past division chair of the ASEE Technological and Engineering Literacy / Philosophy of Engineering Division of ASEE. He is Professor Emeritus and former chair of engineering technologies at Shawnee State University, Portsmouth, Ohio. He is a Fellow of the American Society for Engineering Management and Associate Fellow of the American Institute of Aeronautics and Astronautics. Mr. Hilgarth has a 30-year career in academia instructing courses in
levels and authored journal articles, book chapters, policy briefs, and other publications on Latina/o student success.Mr. Brian Le, Iowa State University An alum of Iowa State University and Marquette University, Brian is currently the Undergraduate Pro- gram Coordinator for the Science Bound program where he works with Scholars from marginalized back- grounds to help them pursue and obtain an ASTEM (Agriculture, Science, Technology, Engineering Math) degree at Iowa State. His career goals and interests is to obtain a PhD in Higher Education Administration and work to be a voice for those who may seem to be voiceless.Maria L Espino M.A, Iowa State University of Science and Technology Maria Luz Espino, M.A. is a
a greater percentage than working engineers.As to persistence in engineering, a number of studies [1], [2], [4], [5], [14] found that students’abilities, perception of abilities, especially in mathematics play a big part. Another largecontributing factor to persistence is student aspirations and how well the discipline – or moreaccurately, their perception of the discipline – lines up with their career aspirations and personalinterest. To improve retention, engineering programs need to ensure that students recognize howtheir career aspirations and personal interests align with their chosen field early in their studies.Toward this end, an accurate picture of student interest is needed.Study PopulationThe authors teach an introductory course
Paper ID #30167The Missing Third: The Vital Role of Two-Year Colleges in ShrinkingEngineering Education DesertsDr. Jennifer Karlin, Minnesota State University, Mankato Jennifer Karlin spent the first half of her career at the South Dakota School of Mines and Technology, where she was a professor of industrial engineering and held the Pietz professorship for entrepreneurship and economic development. She is now a professor of integrated engineering at Minnesota State Uni- versity, Mankato, where she is helping build the Bell Engineering program, and the managing partner of Kaizen Academic.Dr. L. Eric James, Iron Range
Center for Research on Fathers, Children, and Family Well Being and is now the Assistant Dean of Faculty Development and Academic Affairs. Dr. Jethwani has decades of experience in developmental research, program development and evaluation. For the past ten years, she has evaluated several projects funded by the National Science Foundation and the National Security Agency at the NYU Tandon School of Engineering. These projects aim to engage middle school, high school and college students, and their teachers, in robotics and cyber security activities. Findings have identified strategies to better engage female and minority students in STEM related activities and careers. Dr. Jethwani holds a BA from Barnard College, an
Paper ID #30024Bill and Ted’s Excellent Adventure: Lessons Learned from Eight YearsInstruction on the CEBOKWilliam D Lawson P.E., Ph.D., Texas Tech University William D. Lawson, P.E., Ph.D. serves as an Associate Professor of Civil Engineering at Texas Tech Uni- versity. His career in higher education is characterized by excellence and innovation in teaching, award- winning scholarship and sponsored research, and professional service at the national, regional and local levels. Creative activities encompass both technical research on geotechnical applications in transporta- tion, and interdisciplinary study of
solutions that generate and strengthen career plans of students, as well as improve retention, graduation rates, and speed to graduation. He is recognized within education circles as standing at the vanguard of the progressive technological movement. He has taught students, trained corporate salespeople and career coaches, and advised entrepreneurs. His energy, passion, positivity, and attention to detail have served him well in bringing out the best in others.Dr. Kishore Pochiraju, Stevens Institute of Technology (School of Engineering and Science) Kishore Pochiraju is the Associate Dean for Undergraduate Education and a Professor in the Mechanical Engineering department at Stevens Institute of Technology. He recently
school students maintained by the MassachusettsInstitute of Technology (MIT) Office of Engineering Outreach Programs includes 14 free or low-cost science and engineering summer programs, 15 programs with tuition/fees under $1,000, and11 more-extensive programs with tuition/fees greater than $1,000 [2]. Common goals for manyof these camps include: introducing students to engineering as a possible career path; engagingstudents in collaborative, problem-based learning assignments that integrate mathematics,science, and engineering; and providing examples of how engineers engage in engineeringdesign to solve problems [3]–[6]. Some programs choose to specifically target women as anunderrepresented minority in engineering, such as the New Jersey