experience evaluating programs that fall under the umbrella of educational evaluation, including K-12 educational curricula, K-12 STEM programs after-school programs, and comprehensive school reform initiatives. She received her Ph.D. in Research, Measurement and Statistics from the Department of Education Policy at Georgia State University (GSU).Dr. Jessica D. Gale, Georgia Institute of Technology, Center for Education Integrating Science, Mathematics,and Computing Dr. Jessica Gale is a Research Scientist II at Georgia Tech’s Center for education Integrating Science, Mathematics, and Computing (CEISMC). Her research focuses on project-based learning, STEM inte- gration at the elementary and middle grades levels, design
,analyses of award winning products, and a case study of a long-term design project, DesignHeuristics capture the cognitive “rules of thumb” used by designers to intentionally vary their setof candidate designs[23]. These strategies appear to be ones that expert designers employautomatically, without consciously deciding to do so[24]. The heuristics were individuallyextracted across multiple concepts from multiple designers to reflect a useful level of abstractionin describing how to alter design characteristics to create new ones[25]. The resulting set of DesignHeuristics capture 77 different strategies, each of which can be applied independently or in tocreate new designs[26].The set of Design Heuristics is packaged as an instructional tool for
change, and to denote measures of technical competence. Thesteady rise starting around 1980 coincides with the time that personal computers became bothpopular and affordable; for example the IBM PC was introduced in 1981. The accessibilityof technology to all age groups has only grown since then (Mawson, 2007). The 1980’s wasalso the decade technological literacy began to come under increasing consideration in highereducation by policy makers (The Committee to Idenfity Critical Issues in Federal Support forScience and Technology, 1986), foundations such as Sloan (Florman, 1987), and the AAASthrough Project 2061 (Rutherford, 1989).The 1990’s saw increasing interest in technological literacy at the policy level (The Board forEngineering Education
cultures. This experience more often helps to handle the specific issues in theteam project.”Cultural intelligence factors - Behavior, Metacognition, Cognition, and MotivationThe most prevalent difficulty that arose was international faculty members’ personaladjustments. They often struggled and felt powerless when working on a culturally diverse team.This was even more evident for international women faculty. After participating in a cross-cultural training, faculty members reported that the main necessary changes in behavior observedwere self-confidence and assertiveness. Therefore, the participants’ responses were examinedfurther to gain more detail about how cross-cultural training plays a valuable role in changing afaculty member’s behavior
important factor in persistence to degree completion. For example, somestudies report that the diversity gap in STEM participation may be attributed more to perceptionsand beliefs than to academic preparation or achievement levels [1-5]. To the extent that suchperceptions and beliefs form an inaccurate (or “negative”) vision of a future engineering career,curricular approaches that aim to form a more “positive” vision may be warranted. Theseapproaches can be pedagogical, such as collaborative and project-based learning [6-8], content-based by aiming (for example) to expose the positive contributions of engineering to society [9-12], or both. All other things being equal, curricular features than can foster among students amore positive
students an opportunity togrow their skills over the course of their degree program. While engineering mechanics coursesare not always associated with student team projects, these courses provide the opportunity toshow students how teamwork and diversity are relevant to problem solving. And, as mechanics-oriented courses often dominate the sophomore and junior level of many engineering programs,they can be an important venue for providing continuous instruction to students about workingwith others and in teams. This paper introduces and examines the effects of a teamworkintervention in Engineering Mechanics: Statics aimed at teaching students about the importanceof diversity and inclusion in engineering with specific attention on problem solving
Paper ID #27412Investigating Children with Autism’s Engagement in Engineering Practices:Problem Scoping (Fundamental)Ms. Hoda Ehsan, Purdue University-Main Campus, West Lafayette (College of Engineering) Hoda is a Ph.D. student in the School of Engineering Education, Purdue. She received her B.S. in me- chanical engineering in Iran, and obtained her M.S. in Childhood Education and New York teaching certification from City College of New York (CUNY-CCNY). She is now a graduate research assistant on STEM+C project. Her research interests include designing informal setting for engineering learning, and promoting engineering
inclusive, engaged, and socially just. She runs the Feminist Research in Engineering Education Group whose diverse projects and group members are described at pawleyresearch.org. She received a CAREER award in 2010 and a PECASE award in 2012 for her project researching the stories of undergraduate engineering women and men of color and white women. She has received ASEE-ERM’s best paper award for her CAREER research, and the Denice Denton Emerging Leader award from the Anita Borg Institute, both in 2013. She was co-PI of Purdue’s ADVANCE program from 2008-2014, focusing on the underrepresentation of women in STEM faculty positions. She helped found, fund, and grow the PEER Collaborative, a peer mentoring group of early
skills. Inparticular, her study revealed that out of 24 outcomes the participants viewed the following eightas the most important to engineering: problem-solving, teamwork, communication, ethics,design, project management, technical specialization, and leadership. Although leadership wasthe eighth most frequently cited outcome, it aligned closely with four higher-rated outcomes:teamwork, communication, ethics, and project management.Studies that examine the perceived importance of technical and professional skills among recentengineering graduates produce similar findings to those of Bielefeldt (2018): while graduatesvalue technical skills, they consider some professional skills more important than technical skills.For instance, in his study of
/ethnic identities, class, and languagepreference. While we know that first-generation college students are more likely to be Latino/aand/or African American [8], [12], [29], and socioeconomic status varies among this population,it was important to consider culture not as a bounded system commensurate with bounded socialgroups, but as a “process of everyday life, in the form of daily activities” [22, p. 237].We used ethnographic and interview data of engineering students, collected during two separateresearch projects, to generate broad themes. Using our two qualitative datasets, we were able togenerate six themes that captured aspects of students’ funds of knowledge. The six themes wegenerated were: connecting experiences, tinkering knowledge
the Engineering Majors Survey(EMS). The EMS is part of a research project initiated by the National Center forEngineering Pathways to Innovation, or for short EPICENTER. It was designed to investigate“engineering students’ career goals surrounding innovation, and the experiences and attitudesthat might influence those goals” [8]. In 2015, the initial survey (EMS 1.0) of thislongitudinal project was administered to over 30,000 undergraduate engineering studentsenrolled at 27 universities across the United States. A total number of 7,197 students filledout the survey questions. A second (EMS 2.0) and third (EMS 3.0) wave of surveys were sentout in 2016 and 2017, respectively, to approximately 3,500 participants who voluntarilyagreed in EMS 1.0
level, targeted programs provide students with practical experience they caninclude in their college and career applications. Currently in its pilot phase, the Robotics programengages faculty from both the high school and college working alongside their respectivestudents on a dedicated robotics project with aspirations of competing in local, state and nationalFIRST Robotics Competitions. A second program currently in its second semester connectsstudents to the national college/career readiness program, ACE Mentor Program of America.This program provides our students and faculty the opportunity to collaborate on a preconceiveddesign project led by a national construction firm, Turner Construction. Students meet once aweek after school for six
-related environments are notthe norm – not statistically, nor sociologically. This problem is addressed as the “strength ofnumbers” emphasizing that the most important strategy is to improve the relative amount offemales [2]. The expectation is that this gender imbalance problem will stop when females growto a critical mass [3]. However, the question still remains on when we will accomplish this? Astrategy that could reduce in the long term this gender gap, at least within academia, is gettingfemale undergraduate students involved early in research projects [1].Empirical studies make an attempt to (1) understand the decision-making behind female careerchoices [4-5], (2) pressures that contribute for females to take career breaks [6], (3) factors
B.S., M.S., and Ph.D. in civil engineering and a graduate certificate in engineering education – all from Clemson University. She has over ten years of construction and civil engineering experience working for energy companies and as a project management consultant. Dr. Simmons has extensive experience leading and conducting multi-institutional, workforce-related re- search and outreach. She is a leader in research investigating the competencies professionals need to compete in and sustain the construction workforce. Dr. Simmons oversees the Simmons Research Lab (www.denisersimmons.com), which is home to a dynamic, interdisciplinary mix of graduate researchers and postdoctoral researchers who work together to
professor of engineering education at the University of Georgia. He is affiliated with the Engineering Education Transformational Institute and the school electrical and computer engineering at the university. He holds a Bachelor’s degree in electronic and computer engi- neering from the Lagos State University in Nigeria, a Masters in Project management from the University of Sunderland, and a PhD in Educational Psychology from Washington State University. His research in- terests include learning and cognition, students’ engagement, and the assessment of learning and students engagements, in engineering classrooms. His expertise also include the development and validation of measurement inventories, systematic reviews
, vol. 1, no. 1, pp. 116-125, 2006.[3] C. Crosthwaite, I. Cameron, P. Lant, and J. Litster, "Balancing Curriculum Processes and Content in a Project Centred Curriculum In Pursuit of Graduate Attributes," Education for Chemical Engineers, vol. 1, no. 1, pp. 39-48, 2006.
engineering education strategies as well as the technologies to support the 21st century classroom (online and face to face). He also has assisted both the campus as well as the local community in developing technology programs that highlight student skills development in ways that engage and attract individuals towards STEAM and STEM fields by showcasing how those skills impact the current project in real-world ways that people can understand and be involved in. As part of a university that is focused on supporting the 21st century student demographic he continues to innovate and research on how we can design new methods of learning to educate both our students and communities on how STEM and STEAM make up a large part of
, WI, employing wind, solar and biomass energy technologies to reduce their carbon footprint.Early adopters of sustainable living methods and renewable energy usage, Cris has presented at localevents and has been frequently interviewed by the media as a subject matter expert.Cris volunteers asa mentor and judge for the Kidwind, SkillsUSA, Project Lead the Way and Electrathon events in theMidwest. He continues to teach industrial electricity topics for local businesses and industries as a privatecontractor on an as needed basis, and remains active with Madison College faculty teaching with theCREATE Solar Academy classes every summer. c American Society for Engineering Education, 2018 Impacts on Teaching
Paper ID #21854A Strategic Plan to Improve Engineering Student Success: Development, Im-plementation, and OutcomesDr. Jerome P. Lavelle, North Carolina State University Jerome P. Lavelle is Associate Dean of Academic Affairs in the College of Engineering at North Carolina State University. His teaching and research interests are in the areas of engineering economic analysis, decision analysis, project management, leadership, engineering management and engineering education.Dr. Matthew T. Stimpson, North Carolina State University Matthew Stimpson is the Director of Assessment in the Office of Undergraduate Academic Affairs at NC
Knaphus-Soran, University of Washington Emily Knaphus-Soran is a Research Associate at the Center for Evaluation & Research for STEM Equity (CERSE) at the University of Washington. She works on the evaluation of several projects aimed at improving diversity, equity, and inclusion in STEM fields. She also conducts research on the social- psychological and institutional forces that contribute to the persistence of race and class inequalities in the United States. Emily earned a PhD and MA in Sociology from the University of Washington, and a BA in Sociology from Smith College.Dr. Donna C. Llewellyn, Boise State University Donna Crystal Llewellyn received her BA (major in Mathematics and minor in Economics) with High
professional goals. While serving as the Associate Director of the Center for Women in Technology at UMBC she was a co-investigator on a number of successful NSF funded research projects related to improving the retention and success of transfer students, underrepresented groups in STEM, and first-year computing majors. Dr. Martin earned her Ed.D. in Higher Education from The George Washington University, a M.A. in College Student Personnel from The University of Maryland, College Park, and a B.S. in Industrial Engineering from the University of Massachusetts, Amherst.Dr. Gymama Slaughter, University of Maryland Baltimore CountyDr. Carolyn Seaman, UMBC Dr. Seaman is an Associate Professor of Information Systems at the
librarian in the Engineering Library. He was director from 1987-2001 and 2006-2008; from 2002-2005 he went on partial research leave as Director of Collection Development for the NSF-funded National Science Digital Library Project.52 In 2009 he was appointed Associate University Librarian for Scholarly Resourcesand Special Collections. He served as principal investigator on the Kinematic Models for DesignDigital Library (KMODDL)53 involving the Reuleaux Collection of 19th-century kinematicmachines. He led the Task Force to examine library-related needs for the Cornell Tech campus inNew York City
Paper ID #18243Critical Pedagogies and First-year Engineering Students’ Conceptions of ’Whatit Means to be an Engineer’Ms. Ashley R. Taylor, Virginia Tech Ashley Taylor is a doctoral student in engineering education at Virginia Polytechnic and State University, where she also serves as a program assistant for the Center for Enhancement of Engineering Diversity and an advisor for international senior design projects in the Department of Mechanical Engineering. Ashley received her MS in Mechanical Engineering, MPH in Public Health Education, and BS in Mechanical Engineering from Virginia Tech. Her research interests include
training for teachers. Project Lead the Way, for example, allows schools to offer engineeringexperiences through design courses in a variety of disciplines [26]. University-based K-12outreach programs have also shown promise in promoting engineering knowledge, self-efficacy,and interest [27]-[30]. It must be understood that, by necessity, knowledge of these standards andprograms must be communicated to school counselors to increase student awareness andaccessibility. Schools advocating for these programs have indicated their commitment to studentpreparation for STEM careers and school personnel should understand the mechanisms by whichthese programs do so.Research questions. This pilot, ongoing research explores the following overarching
: Albany City School District” , and ”Educational Leadership Program Enhancement Project at Syracuse University” Teacher Leadership Quality Program. She is also the PI on both ”Syracuse City School District Title II B Mathematics and Science Partnership: Science Project and Mathematics MSP Grant initiatives. She is currently the principle investigator on a number of grants including a 21st century grant and an NSF Transformong Undergraduate Education in STEM grant.Robin L. Getz, Analog Devices, Inc. Robin is currently the Director of Systems Engineering at Analog Devices, and has over twenty years of diverse industry experience in engineering leadership, product marketing and sales with multi-national semiconductor
students discuss when they use EBR. One initialexploration of student discussions demonstrated that students were able to use unit-based scienceand mathematics content during EBR [20]. However, there has not yet been research aboutwhether and how all four STEM disciplines are represented in students’ EBR. Thus, the purposeof this study is to do an initial exploration about the variety of STEM content that a team ofstudents discussed when they practiced EBR. Specifically, in this project, we are interested inanswering the following research question: While generating and justifying solutions to anengineering design problem in an engineering design-based STEM integration unit, what STEMcontent does a team of elementary school students discuss
marketing [7], andpedagogical improvements [8]. Our project focuses on a relatively unique area, i.e., curiositydetection in text. This paper presents preliminary, yet promising, results of empirically miningwords that demonstrate a curious disposition (of the students) in text data produced by studentsin response to thought-provoking and critical-thinking exercises. The success of our projectcould positively impact efforts to assess both curiosity and its impact on educational outcomes.For many decades, psychologists have wrestled with understanding the nature of curiosity.Recent work by Grossnickle [9] has provided a framework for understanding facets, factors anddimensions of the construct of curiosity that are relevant to the education audience
Paper ID #26467Designing an Undergraduate Engineering Mentoring Program to EnhanceGender Diversity through Application of Lean Six Sigma Methods and ToolsEmily Kloos, University of Dayton Emily Kloos is a Graduate Assistant at the University of Dayton in the Department of Engineering Man- agement, Systems & Technology where she performs research in order to develop a STEM mentoring program for the University of Dayton. She has experience working as an engineer at various companies with a demonstrated history of working in the food production and manufacturing industries. Skilled in project management, customer service
Purdue University. She also holds a M.S. in Astronomy and Astrophysics and a B.S. in Astronomy and Meteorology both from Kyungpook National University in South Korea. Her work centers on engineer- ing education research, as a psychometrician, program evaluator, and institutional data analyst. She has research interests on spatial ability, creativity, gifted education, STEM education, and meta-analyses. She has authored/co-authored more than 50 peer-reviewed journal articles and conference proceedings and served as a journal reviewer in engineering education, STEM education, and educational psychology, as well as a co-PI, an external evaluator or advisory board member on several NSF-funded projects (CA- REER, iCorps
Engineering (EE) from the Virginia Military Institute, Master’s Degree in EE from the George Washington University, and Ph.D. from the University of Louisville in Computer Engineering. He is also a graduate of the Signal Officer Basic Course, Signal Captain’s Career Course, and the Army Command and General Staff College. At West Point, LTC Lowrance also serves as a senior researcher in the Robotics Research Center. He has led multiple research projects related to robotics, artificial intelligence, and machine learning. His research has led to over 25 peer-reviewed journal and conference papers, several of which have won best paper awards.Major Eric M. Sturzinger, United States Military Academy MAJ Eric Sturzinger is a