reformation in general, and to the use of modern pedagogicalskills in particular. The paper also argues that any meaningful change in Region’s classroompractices today (dominated by traditional lecture-based methods) must be mandated andsupported by the university administration. What is necessary to create a change, is for thedepartment or college, to have a comprehensive and integrated set of components: clearlyarticulated expectations, opportunities for faculty to learn about new pedagogies, and anequitable reward system.Introduction“To teach is to engage students in learning.” This quote, from Education for Judgment byChristenson et al, (1) captures the meaning of the art and practice of pedagogies ofengagement. The theme advocated here is that
reformation in general, and to the use of modern pedagogicalskills in particular. The paper also argues that any meaningful change in Region’s classroompractices today (dominated by traditional lecture-based methods) must be mandated andsupported by the university administration. What is necessary to create a change, is for thedepartment or college, to have a comprehensive and integrated set of components: clearlyarticulated expectations, opportunities for faculty to learn about new pedagogies, and anequitable reward system.Introduction“To teach is to engage students in learning.” This quote, from Education for Judgment byChristenson et al, (1) captures the meaning of the art and practice of pedagogies ofengagement. The theme advocated here is that
Education program (NSF IUSE), three community colleges from NorthernCalifornia collaborated to increase the availability and accessibility of the engineeringcurriculum by developing resources and teaching strategies to enable small-to-medium sizedcommunity college engineering programs to support a comprehensive set of lower-divisionengineering courses. These resources were developed for use in a variety of delivery formats(e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for localcommunity colleges to leverage according to their individual needs. This paper focuses on thedevelopment and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components
-regulation. She developed and continues to work on Engineering Moment, a co-curricular podcast project about the social role of engineering, and Vision Venture, a video series exploring students’ engineering identities, agency, and purpose after graduation.Dr. Morgan Hooper, University of Toronto After completing her PhD at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT), Morgan Hooper is now an Assistant Professor (Teaching Stream) at the University of Toronto. There, her teaching focuses on building community within hands-on Engineering Design courses and beyond. She encourages students to engage with multi-faceted, trans-disciplinary engineering projects to learn the complex
contentclarifications. Lab periods are used for online laboratory exercises and analysis, project check-ins, and periodic reflection. The labs contain pre-lab assignments and in-lab exercises. Pre-labshelp students prepare for in-the-lab brainstorming. The in-the-lab work includes watching avideo of the lab components, brainstorming the solutions, watching the lab video conducted bythe faculty, and doing a group analysis of the results. The learning outcomes intended for theonline labs are the same as in-person labs. Occasionally, a few minutes are allocated forreflection during lab periods aimed at increasing inclusion and a sense of belonging for allstudents.The one offering of the online labs is compared to two offerings of in-person labs, one precedingand
schools.Shortly after graduation, I continued teaching physics at a private high school. I decided tofurther my education and I was admitted to the physics doctorate program in the United States.As a graduate student I taught various physics and science courses every semester includingwinter and summer sessions for more than five years, both as a laboratory and discussion sessioninstructor.When I teach, I think about my past experiences with all of my professors. Unfortunately, I cannotcount many excellent teachers in my education but I learned a lot from the ones who had flaws. Tobe a good physics teacher it is not enough to possess the knowledge but have the ability toeffectively transfer that knowledge to the students. When teaching introductory-level
. 30 international journals as well as national and international funding organizations and frequently organizes national and international conferences in his field. Prior to joining the University of Bath (UK), he was an Assistant Professor at Georgia Tech (USA) and a Lecturer in the School of Engineering at Durham Uni- versity (UK) where he earned a Postgraduate Certificate in Teaching and Learning in Higher Education. He joined Durham from the University of Stuttgart (Germany), where he earned his Ph.D. in Computer Science. Page 26.1596.1 c American Society for
Rebecca A. Bates received the Ph.D. degree in electrical engineering from the University of Washington in 2004. She also received the M.T.S. degree from Harvard Divinity School in 1993. She is currently Professor and Chair of the Department of Integrated Engineering program at Minnesota State University, Mankato, home of the Iron Range and Twin Cities Engineering programs.Dr. Tamara Floyd Smith, Tuskegee University Dr. Tamara Floyd Smith is a Professor of Chemical Engineering at Tuskegee University.Dr. Melani I. Plett, Seattle Pacific University Prof. Melani Plett is a Professor in Electrical Engineering at Seattle Pacific University. She has over sev- enteen years of experience in teaching a variety of engineering
; 3) setting up lightning conditions required for the successful vision error proofingand camera calibration; 4) teaching tool, application, and calibration frames; 5) performing 2Dcalibration and 2D single and multiview robotic processes; 6) performing 3D calibration and 3Dsingle view robotic vision processes. Hands-on training is an integral part of any coursedeveloped in the School of Technology at Michigan Tech, and this course is no exception. It willinclude 12 laboratory exercises, totaling 36 hours, with the goal of providing students theopportunity to configure and execute real-life, industry comparable, robotic vision scenarios. Thecourse will be similar to the existing Real-Time Robotics Systems' rigorous assessment strategyand will
involve small system design, signal processing, and intelligent instrumentation.Dr. Ying Yu, University of Hartford Dr. Ying Yu received her B.Eng. from Fudan University, Shanghai, China, in 2000. She received her M.S. and Ph.D. in Electrical Engineering from Brown University, R.I., USA, in 2003 and 2007, respec- tively. Currently, she is teaching as an associate professor of the Department of Electrical and Computer Engineering at the University of Hartford. Her current research interests are audio and speech signal processing, acoustic scene classification, speaker identification and verification, promoting diversity and inclusion in the academic environment, and teaching with new educational methods, including peer
, to the best of our knowledge, a practical solution and an effective assessmentstrategy have not been adopted for emerging usage models integration such as IWMDs. Ourpedagogical hypothesis is that emerging security research (through cryptographic solutions) canbe integrated in university education considering three teaching and learning approaches; (a).Developing a respective multi-disciplinary laboratory (engineering, mathematics, andbiomedicine in particular) for both research and teaching, (b). Advancing education throughinter- and intra-university research collaborations in the aforementioned fields, and (c).Assessing the outcome through detailed benchmarks. The authors of this work are from differentand diverse backgrounds and have prior
processing, and engineering education. Specific areas of controls and signal processing research include the design and modeling of intelligent controls, Kalman filters, and automation. Engineering education research includes curriculum and laboratory development for these concepts. c American Society for Engineering Education, 2017 Using Google Apps to Collect and Organize My Tenure PortfolioIntroductionAt most universities, promotion and tenure decisions are made based on performance in threecategories: teaching, research, and service. However, the emphasis on each category variesbetween universities depending on their institutional priorities. One thing is consistent; acandidate for promotion needs to
, Wright State University Nathan Klingbeil is a Professor in the Department of Mechanical & Materials Engineering at Wright State University in Dayton, OH. He served as Dean of the College of Engineering and Computer Science from 2013-2018. Prior to his appointment as Dean, he served as Senior Associate Dean from 2012-2013, as Associate Dean for Academic affairs from 2010-2012, as Director of Student Retention and Success from 2007-2009, and held the University title of Robert J. Kegerreis Distinguished Professor of Teaching from 2005-2008. He is the lead investigator for Wright State’s National Model for Engineering Mathematics education, which has been supported by multiple grants from the National Science
teaching and advising awards including the UIC Award for Excellence in Teaching (2017), COE Excellence in Teaching Award (2008, 2014), UIC Teaching Recognitions Award (2011), and the COE Best Advisor Award (2009, 2010, 2013). Dr. Darabi has been the Technical Chair for the UIC Annual Engineering Expo for the past 7 years. The Annual Engineering Expo is a COE’s flagship event where all senior students showcase their Design projects and products. More than 700 participants from public, industry and academia attend this event annually. Dr. Darabi is an ABET IDEAL Scholar and has led the MIE Department ABET team in two successful accreditations (2008 and 2014) of Mechanical Engineering and Industrial Engineering
practical physics labs, especially in historically black collegesand universities (HBCUs). Also, the difficulty undergraduate students have in making connectionsbetween their theory teachings and their practical exercises, as well as how pertinent these labsessions are to their everyday lives, has led to the conclusion that physics experiments are highlyabstract. This study used low-cost, interactive, code-free, portable technology to improve students’practical experiences and report how these experiments are applied in everyday activities. Thestudy involved 50 STEM students registered for the Introduction to physics laboratory course.According to the students’ feedback and the motivated strategy for learning questionnairesadopted, they were very
Paper ID #18785Enhancing participation of deaf engineering students in lab discussionDr. Raja S Kushalnagar, Gallaudet University Raja Kushalnagar is an Associate Professor and the Director of the Information Technology Program at Gallaudet University in Washington, DC. He teaches information technology courses, and mentors deaf, hard of hearing and hearing students in information technology and accessible computing research. His research interests focus on the intersection of disability law, accessible and educational technology, and human-computer interaction. He worked in industry for over five years before
engineering students. Theapplicability of PID in many different career fields, implies that many degree programs couldbenefit from adding it to their curriculum. Mechanical Engineering, Electrical Engineering,Chemical Engineering, Electrical Engineering Technology, Mechanical EngineeringTechnology, etc. are all degrees that either already offer disciplines or courses that study thedesign and use of automated control [5].Part of the Advanced PLC laboratory at our university, the Amatrol Process Control System,shown in Fig. 1, is used to teach programming of industrial equipment for controlling the flowrate and level of fluids [3]. It is not concerned with the theory of PID control, rather it focuses onthe programming of industrial equipment and the
laboratory. Based on curricula need and support available from vendors the equipment listed below were opted. The same kind of equipment will be used in lab modules for an anticipated technical elective laboratory course (Industrial Automation and Robotics Laboratory) for ODU students in the ET (Engineering Technology) and Electrical and Computer Engineering B.S. program. Figure 3. PLC Rack with I/O Devices Figure 4. Festo Mechatronics Training System The following stations are now integrated in ODU Robotics lab: PLC Rack with HMI and Motor Drives, PLC Rack with I/O Devices, Festo Robot Teach Pendant with Conveyor Belt System, Festo Robot Training System, Festo Mechatronics Instrumentation system, Festo Mechatronics
Education, 2018 Enhancing Engineering Lab Report Writing Using Peer Review Assessment Rocio Alba-Flores Georgia Southern UniversityAbstractThis paper describes the educational experiences gained by incorporating a peer review componentfor evaluating formal lab reports in a Circuit Analysis Laboratory course. In this course studentsperformed ten lab experiments, from which the instructor selected two to have individual formalwritten lab reports. The instructor dedicated about one hour at the beginning of the semester to talkabout peer review and its importance. The instructor together with all students performed a mockpeer review of
also been recognized for his dedication to teaching in the College of Engineering (Rose and Everitt awards) and he is routinely nominated to the list of teachers ranked excellent at Illinois.Dr. Marcia Pool, University of Illinois, Urbana-Champaign Dr. Marcia Pool is a Lecturer in bioengineering at the University of Illinois at Urbana-Champaign. In her career, Marcia has been active in improving undergraduate education through developing problem based laboratories to enhance experimental design skills, developing a preliminary design course focused on problem identification and market space (based on an industry partner’s protocol), and mentoring and guiding student teams through the senior design capstone course
Student - Developed test system, designed and fabricated custom components. • 32 Course Graduate Students - Gave feedback on the course content and delivery over 2 semesters.Course ObjectivesWe wanted to establish a course that starts by teaching the fundamentals of structural modeling,but leads the students quickly and directly to the laboratory. At the graduate level this validationstep is often excluded, so students end up with the skills to build complex models, but never to setup realistic experimental conditions and accurate data acquisition systems to test these models.Our goal was to provide the educational structure to teach the integration of the two disciplines,but to also take it a step further and have the exemplar
Paper ID #19828Development and Implementation of a New Hands-on Freshman EngineeringDesign Course that Promotes Inclusiveness and Retention (Work in Progress)Dr. Tracy Jane Puccinelli, University of Wisconsin, Madison In 2011, Puccinelli joined the Biomedical Engineering (BME) Department. As part of the BME design faculty, she works on curriculum development, as well as innovative approaches for teaching design. Puc- cinelli coordinates BME outreach, advising BME seniors as they develop interactive, hands-on activities for K-12 students that teach biomedical engineering concepts. Additionally, in 2012, she began teaching
courses at Stanford University were required to be delivered via online instruction withzero in-person contact. The course became a key point of access for students needing to fulfillscience credit requirements, and was one of a small number of laboratory courses still availablevia online teaching in the School of Engineering. The most recent iteration of the course madeuse of online experimental seminars completed using video conferencing, and self-paced worksuch as analysis of data and report writing (which was asynchronous and could be completed atthe students’ individually preferred time and pace). The active learning methods previously usedwithin physical classrooms were adapted for use in online learning, as summarized below inTable 3
relevant to students’ topics in an engineering bibliographic database.Regarding the pedagogical materials, the librarians needed to update the teaching contents ofonly one workshop, simplifying their tasks.As seen in Figure 1 and as detailed previously, the training sessions have evolved significantlyover time. Even though the training sessions have been called workshops, laboratories orcourses, the terms "courses" or "training sessions" will be used from now on.Teaching Evaluation Surveys: Satisfaction RatesTo improve the courses and to assess the participants’ appreciation, students filled teachingevaluation surveys that contained two parts. An example of a full 2019 survey can be found inthe appendix. In the first part, students were presented
/population, and the 3D-printed case. Due to time constraints, teaching-assistant help wasoffered in terms of the BLE data transmission and the cell phone app. Portable data acquisitionhardware (Digilent Analog Discovery 2 units) and virtual instrument software (WaveForms 2015software) provided students with means to build and test circuitry outside of the confines oftraditional benchtop laboratories. Student performance was assessed relative to learningobjectives specified for the project, and pre/post surveys were employed to gauge student self-perceptions of learning with regard to physical device components, instrumentation concepts,analog circuitry, digital circuitry, wireless links, printed circuit boards, 3D printing, and cellphone apps. While
the Science and Engineering Research Council at the University of Liverpool, UK. Dr. Albin conducted research on Si and GaAs electronic devices and semiconductor lasers at the research laboratories of GEC and ITT and published numerous articles in this field. He was a professor of Electrical and Computer Engineering at Dominion University. He has advised 14 PhD and 19 MS students. He received numerous awards: Doctoral Mentor Award 2010; Excellence in Teaching Award 2009; Most Inspiring Faculty Award 2008; Excellence in Research Award 2004; and Certificate of Recognition for Research - NASA, 1994. He is a Senior Member of the IEEE and a Member of the Electrochemical Society.Prof. Petru Andrei, Florida A&M
Paper ID #13609Engineering Everyday Discovery Program: Motivating Middle School Chil-dren Interest in STEMDr. Rosalyn Hobson Hargraves, Virginia Commonwealth University Dr. Rosalyn Hobson Hargraves holds a joint appointment in the Schools of Education and Engineering as Associate Professor of Teaching and Learning and Associate Professor of Electrical Engineering at Virginia Commonwealth University. She received her B.S., M.S., and Ph.D. degrees in Electrical En- gineering from the University of Virginia. Her research interests are in STEM education, biomedical signal and image processing, and machine learning. She has been
Labor, Dec. 29, 2014. 2. Donovan, S. and Bransford, Ed., “How Students Learn: History, Mathematics, and Science in the Classroom,” Washington, DC: National Academies Press, 2005. 3. Windschitl, M., “Folk Theories of ‘inquiry’: How Preservice Teachers Reproduce the Discourse and Practices of the Scientific Method,” J. of Research in Science Teaching, 41, z81-512, 2004.4. Windschitl, M. and Thompson, J., “Transcending simple forms of school science investigations: Can pre-service instruction foster teachers' understandings of model-based inquiry?” American Educational Research J., 43(4), 783-835, 2006.5. Brown, S. and Melear, C., “Preservice Teachers’ Research Experiences in Scientists’ Laboratories,” J. of
Paper ID #24669Effective Faculty Development – More than Time in the SeatDr. Louis J Everett P.E., University of Texas, El Paso Dr. Everett is the MacGuire Distinguished Professor of Mechanical Engineering at the University of Texas El Paso. Dr. Everett’s current research is in the areas of Mechatronics, Freshman Programs and Student Engagement. Having multiple years of experience in several National Laboratories and Industries large and small, his teaching brings real world experiences to students. As a former NSF Program Director he works regularly helping faculty develop strong education proposals
, less than 5% of the undergraduate degrees awarded in the US are in engineering,compared to 13% in European countries and nearly 25% in Asia [1]. It is becoming increasingly clearthat universities in the United States must adapt their teaching and retention practices to adequatelyprepare students to fill critical roles in a technology focused, multi-disciplinary workplace [2]. Thedesire for a more interdisciplinary approach to undergraduate engineering education is evident as thetransition to more geographically disparate teams is driving the need for engineering professionals todemonstrate that they possess not only the requisite technical acumen, but skills like communication,teamwork and conflict resolution that are not typically taught in