movement that theorizes that thewell-being of individuals is best advanced by institutional freedom, deregulation, privatization,and competition [6], [7]. Neoliberalism champions free market exchange. It values competitionand self-interest as the ethics that should be used to guide all human actions [8]. Embracingneoliberalism, the focus of higher education has shifted from the pursuit of knowledge to theproduction of revenue.A culture of productivity has been previously characterized as the pervasive attitude thatengenders the result of labor as a commodity and values labor efficiency over an individual’sneeds, preferences, and well-being [9], [10]. The STEM academic culture of productivityprioritizes output, efficiency, and competition [11], [12
STEMresearch experiences in defense relevant research areas and to teach the participants about careeropportunities in the Naval civilian research enterprise, as well as other research career pathswithin the defense industry. In addition to gaining hands-on research experience and mentoring,the students received training from each university's Office of Undergraduate Research in topicsrelated to the nature of research, the ethics of researchers, and the mechanics of writing andpublishing research.Initially the program also included travel for both the student veterans and their faculty mentorsto the Naval Research Laboratory in Washington D.C., to meet their NRL mentors in person, andto present on their summer research. COVID-19 prevented these trips
University of Virginia. He is the principal investigator at University of Virginia on the ’4C Project’ on Cultivating Cultures of Ethical STEM education with col- leagues from Notre Dame, Xavier University and St. Mary’s College. His research focuses on wicked problems that arise at the intersection of society and technology. Rider holds a Ph.D. in Sustainability from Arizona State University, and a Master’s degree in Environmental Management from Harvard Uni- versity and a Bachelor’s degree in Environmental Science from University of New Hampshire. Before earning his doctorate, he has worked for a decade in consulting and emergency response for Triumvirate Environmental Inc.Andrew LiRebecca Jun, University of Virginia
teaming; Engineering in Society, exploring the implication of engineeringsolutions on environmental, ethical, and social aspects of society; and Engineering Design,featuring an engineering design process. Each engineering design follows an engineering designprocess, including evaluation based on stakeholder analysis. The curriculum is designed to beoffered as a yearlong high school course. It consists of eight units, designed with the idea ofspiraling complexity. Concepts are introduced and are reinforced through later lessons andactivities, allowing increasing autonomy and creativity throughout the course. The first two unitsfocus on a true introduction to engineering, including social, ethical, and environmentalramifications of engineering
Stanford University in 2008 and 2012, respectively. Her current engineering education research interests include engineering students’ understanding of ethics and social responsibility, sociotechnical education, and assessment of engineering pedagogies.Dr. Janet Y Tsai, University of Colorado Boulder Janet Y. Tsai is a researcher and instructor in the College of Engineering and Applied Science at the University of Colorado Boulder. Her research focuses on ways to encourage more students, especially women and those from nontraditional demographic groups, to pursue interests in the eld of engineering. Janet assists in recruitment and retention efforts locally, nationally, and internationally, hoping to broaden the image
Academic Program, a living-learning community where students learned about and practice sustainability. Bielefeldt is also a licensed P.E. Professor Bielefeldt’s research interests in en- gineering education include service-learning, sustainable engineering, social responsibility, ethics, and diversity.Dr. Jon A. Leydens, Colorado School of Mines Jon A. Leydens is Professor of Engineering Education Research in the Division of Humanities, Arts, and Social Sciences at the Colorado School of Mines, USA. Dr. Leydens’ research and teaching interests are in engineering education, communication, and social justice. Dr. Leydens is author or co-author of 40 peer-reviewed papers, co-author of Engineering and Sustainable Community
Paper ID #33149Engagement in Practice: Social Performance and Harm in Civic HackathonsAngela L. Chan, University of Illinois Urbana Champaign Angela has completed her B.S. Systems Engineering and Design at the University of Illinois Urbana Champaign and is beginning a M.S. Systems & Entrepreneurial Engineering to focus on design research. She is invested in co-designing with communities, ethical tech and engineering education, and radical empathy.Dr. Molly H. Goldstein, University of Illinois Urbana Champaign Molly H. Goldstein is Teaching Assistant Professor in Industrial and Enterprise Systems Engineering at
additional unit on “inclusion” that remains separate from quantitative work.The gap of awareness regarding bias in engineering processesEngineers must be aware of biases and assumptions that shape the products they create, as thishas engineering ethics implications on how their work impacts the world (Dyrud, 2017; Feister,et. al., 2016). Within our own subfield of biomedical engineering, unaddressed biases have led tosituations such as left-handed surgeons not receiving appropriate equipment during training(Adusumilli et. al, 2004), facial recognition systems not registering the pain expressions ofdementia patients (Taati et. al., 2019), and smartphone-based conversational agents havinginappropriate responses to questions about sexual or domestic
, engineering ethics, and environmental justice.Erica D. McCray, University of Florida Dr. Erica D. McCray is an Associate Professor of Special Education at the University of Florida. Prior to joining the faculty, she served as a special educator for students with behavioral and learning disabilities in Title I elementary and middle school settings. Dr. McCray has been recognized on multiple levels for her teaching and research, which focuses on diversity issues. American c Society for Engineering Education, 2020 Work in Progress: An Exploration of the In/Authentic Experiences of EngineersAbstractThis paper is a work in progress
Summer 1- Cultural Immersion with a community Project in Project & Design 1Community CoreEngagement Year 1- Social Justice, Environmental Sustainability, Sciences Conceptual Design, Community Engagement Design Ethics & Summer Zero Thinking Social Summer 0- Design thinking, Empathy & Design, Team& Empathy Justice Work, Personal Identity as an Engineer
. a. Make connections across math, physics, and engineering courses. b. Re-inforce the importance of developing quality writing skills. c. Show how other subjects such as history, ethics, and musical improvisation may cross paths with or support engineering views and mindsets. 4. Overview of first-year engineering core/foundation courses. a. Share ABET student learning outcomes and expound on expectations. b. Conduct a detailed explanation of common course topics for first-year courses to include expected prerequisite knowledge. c. Identify support resources available to students. 5. Explore industry sectors, highlighting various majors involved in each. a. Link to
proceed- ings. Dr. Tu has over 11 years of college teaching and research experiences in cybersecurity and digital forensics. Dr. Tu is a Certified Ethical Hacker (CEH), Certified Pen Tester (CPT), Certified Hacking and Forensics Investigator (CHFI), & AccessData Computer Examiner (ACE).Prof. Tae-Hoon Kim, Purdue University NorthwestMr. Justin David Heffron, Purdue University NorthwestMr. Jonathan Kakahiaka White c American Society for Engineering Education, 2017 PNW GenCyber Summer Camp: Game based Cybersecurity Education for High School Students Ge Jin1, Manghui Tu2, Tae-Hoon Kim3, Justin Heffron4, and Jonathan White5
Physics and interpret data. c An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability. d An ability to function on multidisciplinary teams. e An ability to identify, formulate, and solve engineering problems. PSO f An understanding of professional and ethical responsibility. a 3 3 3 3 3 3 3 3 g An ability to communicate effectively. b
% Male (%) 20% Total (%) 15% 10% 5% 0%Figure 3. Other factors impacting development of student's successful engineering culture(knowledge, practices, and values) during semester. Gender breakdown.Female students viewed their interaction with others as more important than malestudents, who viewed “real world experiences” as most important. Work in other courseswas seen as important. Personal characteristics and experiences follow and some may bevia extra-curricular activities, clubs, etc. Some of the personal characteristics includepersonal attitudes, work ethic, time management, self-management, other varied personalinterests, learning ability, etc
). properties of materials and other STEM topicsE. Understand the social relevance and ethical The social relevance and ethical implications of Objective met. No recommendations implications of engineering activities related to manufacturing as a sociological phenomenon was manufacturing (human rights, environmental impact, presented and discussed. etc.) (Goal 2). Participants worked as teams within the university Objective met. Consider suggestion regardingF. Share knowledge, ideas and concepts working on hosting sites during which the teams developed grouping participants by background teams with professional and pre-service
emphasized: 1. “Global problems of the modern society. Culture, cultural value and cultural identity 2. “Technological breakthrough in the context of globalization” 3. “Ethics of communication in the modern society” 4. “Outstanding international scientists” 5. “Tolerance as an essential quality of an individual and a specialist in the modern society” 6. “Specialist of the 21st century”.Using the “Specialist of the 21st century” as an example, this theme can be integrated as amodule in the engineering disciplines. The purpose is to form self-determination, global andsocial awareness, and decision making through the social interactions within a group of highschool students through the completion of the following steps. In the first
research.Different ways of thinking facilitate different strategies and subsequent actions to innovate. Thestudy uses the Sustainability Education Framework for Teachers (Warren, Archambault, &Foley, 2014) that embraces four ways of thinking including futures, values, systems, andstrategic thinking to address complex educational challenges.Futures thinking focuses on working to address tomorrow’s problems today with anticipatoryapproaches to understand and prepare for future changes, problems, and solutions (Warren et al.,2014). Values thinking is about recognizing the concepts of ethics, equity, and social justice(Warren et al., 2014). It involves understanding these concepts in the context of varying culturesand accordingly making decisions. Systems
, 2012. Appendix A - Unit OutlineDay 1: Connect circuitry to neuroscience (Lesson 1, 50 min) ● Engage: Demonstrate gripper hand, let students test it out. ● Explore: On large whiteboards, sketch how the gripper hand works and list similarities and differences between circuits & human bodies. Discuss boards briefly. ● Engage: Show VEST and have students take notes on discussion questions, then discuss constraints and ethics (invasive/noninvasive, end-user input, cost, problems etc) ● Homework 0: Jigsaw one of the four articles about BCI/assistive devicesDay 2: Explore Sensor and Logic Components (Lesson 2, 50 min +) ● Elaborate: Jigsaw and discuss the articles, specifically regarding
selections based on a Likert scale of well, very well, exceptionally well, or not applicablebased on the degree to which he/she believed their mentor(s) performed various mentoringpractices.ResultsThe responses provided by the participants to the qualitative open-ended questions on the surveyrevealed several common emerging themes. For example, when asked to describe what factors wereused to select a mentor student participant responses were as follows: 1) professionalism of the mentor,2) previous advising experience with mentor, 3) person demonstrated consideration for the student ingiven situations, 4) person was eager to share information to assist with pursuing degree, 5) commonresearch interests with the mentor, and 6) work ethics of the mentor
, time, and performance and; 5. Become aware of ethical and societal concerns relating to the problems being solved.Using ABET’s concept of outcomes based learning, there should be learning outcomes that aremeasurable and targeted to help the students in reaching the stated objectives. The learningoutcomes for the workshop are listed below.The student will: 1. Apply the Lean LaunchPad process to engineering design; 2. Analyze a problem, and identify and define the requirements appropriate to a solution; 3. Design, implement, and evaluate an engineering design to meet desired needs; 4. Function effectively on teams to accomplish a common goal; 5. Understand professional, ethical, legal, security and social issues and
States. He is a licensed professional engineer in multiple states. Dr. Barry’s areas of research include assessment of professional ethics, teaching and learning in engineering education, nonverbal communication in the classroom, and learning through historical engineering accomplishments. He has authored and co-authored a significant number of journal articles and book chapters on these topics.Dr. Beth Lin Hartmann P.E., Iowa State University Beth Lin Hartmann is a senior lecturer in construction engineering at Iowa State University. Hartmann served 20 years in the U.S. Navy Civil Engineer Corps before joining the faculty at Iowa State in 2009. She currently teaches the civil and construction engineering design-build
connect to the local clean tech energy start up community.3.4 Incorporating the NEET Ways of Thinking --- cross-school initiativesA major effort of the current school year is building bridges to other schools within MIT.NEET has identified resource experts from across the Institute to help develop pilot modules for theNEET Ways of Thinking3. This is detailed in Table 1 below. Work has begun on four of the Ways ofThinking --- Self-learning, Personal Skills (ethics), Critical Thinking and Creative Thinking (see Figure1 below), with the goal of piloting them in the NEET seminars and projects in 2019-20 and beyond.Figure 1: Implementing the NEET Ways of Thinking in Threads with Cross-School PartnersWe started with a Self-learning module that was
.) (c) Ability to design a system, • The system and/or process design consideration component, or process to meet based on the P3 (Planet, Prosperity, and People) desired needs within realistic (Fig. 1) constraints such as economic, • Relation of challenge to the P3 environmental, social, political, • Research activities that promote and incorporate ethical, health and safety, sustainability principles. manufacturability, and sustainability (d) Ability to function on • Most engineering programs have little or no multidisciplinary teams opportunities for students to work with students
working.Specifically, outcome 2 is that they would demonstrate “an ability to apply engineering design toproduce solutions that meet specified needs with consideration of public health, safety, andwelfare, as well as global, cultural, social, environmental, and economic factors [1].” Outcome 4requires “an ability to recognize ethical and professional responsibilities in engineering situationsand make informed judgments, which must consider the impact of engineering solutions inglobal, economic, environmental, and societal contexts.” Arguably outcomes 3 and 5, whichexpect that engineering graduates demonstrate the abilities to communicate with a range ofaudiences and to work effectively as team members, also require a working understanding ofmulticultural
for the changing nature of the job. Perhaps firefighters are prepared for the variety ofproblems in the field, but they do not have the capability to react at the moment and respondappropriately.Simulation (e.g. virtual reality simulation) can provide a safe, ethical, and cost-effectivealternative to practice in certain real fire scenes. This can serve in two ways: it can give a betterunderstanding of new trainees’ behavior and how can be shifted to safe behavior and offertrainees the opportunity to have effective and component training. By using simulations ofvirtual buildings with virtual fire environments, trainees can interact with a changingenvironment simulate various work-related procedures and/or judge whether a building design
the School. Pat teaches leadership, ethics, sustainabil- ity, and study abroad courses. She has held a number of leadership roles in the American Society for Engineering Education (ASEE) including four terms on the ASEE Board as well as serving two times as the Chair of Engineering Technology Council. Pat is a Fellow of ASEE. Her research interests include sustainability and study abroad education.Shawn Patrick Shawn Patrick is the Faculty Development Program and Evaluation Director of the Indiana University (IU) School of Medicine Dean’s Office of Faculty Affairs and Professional Development. Shawn is also an associate faculty in the Department of Technology Leadership & Communication through the Purdue
extensive practical knowledge; c. an ability to conduct standard tests and measurements, and to conduct, analyze, and interpret experiments; d. an ability to function effectively as a member of a technical team; e. an ability to identify, analyze, and solve narrowly defined engineering technology problems; f. an ability to apply written, oral, and graphical communication in both technical and non- technical environments; and an ability to identify and use appropriate technical literature; g. an understanding of the need for and an ability to engage in self-directed continuing professional development; h. an understanding of and a commitment to address professional and ethical responsibilities
a rare opportunity for these students toperform undergraduate research. The research theme for this program is energy: specifically,catalysis, energy storage, and biofuels due to the pronounced expertise in these areas at LSU. Amajor strength of this REU program is the partnership with the LSU Business & TechnologyCenter which provides the REU students with training in technology transfer fundamentals andhow to pitch scientific ideas to non-scientists. In addition to the entrepreneurship training, theprogram offers weekly seminars in ethics, effective presenting, applying to graduate school,industrial safety, and topical seminars related to three main research areas of the programs. Thestudents were assessed individually (weekly reports
a design challenge. Communication Communication is essential to effective collaboration and to understanding the particular wants and needs of a “customer,” and to explaining and justifying the final design solution. Attention to Ethical considerations draw attention to the impacts of engineering on ethical people and the environment. considerationsFor eight months, the Fellows met twice a month with the program manager. Through thesemeetings the program manager was able to build a comfortable rapport with the group allowingthem to have conversations around sensitive subjects such as race and gender in the world ofscience, technology, engineering and math. These meetings also allowed the
following student outcomes included in ABETGeneral Criterion 3 for Engineering Technology Programs [8]: (a) An ability to apply knowledge of mathematics, science, and engineering; (b) An ability to design and conduct experiments, as well as to analyze and interpret data; (c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability; (e) An ability to identify, formulate, and solve engineering problems; (f) An understanding of professional and ethical responsibility; (k) An ability to use the techniques, skills, and modern engineering tools necessary for