the diverse individuals.Throughout the summer, students complete weekly guided reflections, and before and after theprogram, complete a pre- and post-assessment.MethodologyThis research study used mixed methods to collect data throughout the NHERI REU SummerProgram for a five (5) year period, which included five different cohorts of student researchers.The data collection is designed to follow a case study that is bound by time as studentsparticipate in the program together, attend the same events virtually, and provide the sameweekly deliverables. Although students have different experiences and perceptions based onindividual interactions at each of their sites, they are immersed as part of the community ofundergraduate researchers for the
end of this course, students will be able to 1. Reflect on interests and potential career paths 2. Leverage existing digital technologies ethically and efficiently to solve the problem of how to create professional relationships from scratch 3. Perform outreach and schedule career conversations, via video chat, with professionals via warm networking and cold networking strategies 4. Effectively conduct career conversations (making small talk, active listening, asking smart questions, expressing gratitude, etc.) 5. Develop a professional brand, including an effective LinkedIn profile 6. Utilize newfound relationships to access
studentteam leader and held to co-develop the process, deliverables, timeline and implementation plans.Students complete bi-weekly personal journal reflections to unpack their experience throughoutthe term. Projects are presented at the end of the term with agency representatives attending. Peerevaluations are conducted, as well as periodic surveys and focus groups to understand theefficacy of the experiences for both students and community partners. Students report highsatisfaction with the experience, pointing to several gains: deeper understanding of the plight ofcommunities in need (e.g., homeless, seniors, underprivileged kids), skills they honed during theproject (e.g., essential skills such as organizational, communication, presentation
knowledge inscience and technology to students with different backgrounds; (4) promotes reflective anddivergent thinking, self-directed learning, and encourages collaboration.The need to improve project-based instruction and include studies of the project method inpre-service teacher education is emphasized in literature5. However, only minimalinformation is available on educational approaches and examples of courses which prepareteacher students to guiding design projects. Clear recommendations for development of suchcourses are currently required.This paper considers our Teaching Methods in Design and Manufacturing course in whichstudents study engineering subjects and gain project guidance skills. The students performlaboratory and project
concept. An alternative definition of these steps isdoing, thinking, modeling, and checking. This cycle is shown in Figure 1. More total learningoccurs when each of these four steps occurs 5, 6.It can be argued that learning can begin with any step of the process. Engineering, for example,is often taught by introducing a concept or model and assigning homework to reinforce theconcept. In a course that has a lab component, the students can sometimes put the concept into Concrete Experience (experiencing/feeling) Active Experimentation Reflective Observation (applying/doing) (examining
single student or group of students. Rather, UnLectures are based onpromoting reflective learning through peer instruction. Studies have shown that reflection of Page 24.1300.2students’ own or others’ experiences results in development of new perspectives or clarificationof concepts and techniques8, 9. It is also evident from these studies that reflective learning hassignificant value in professional practice10. Given that our students have integrated cooperativeeducation into their curriculum, UnLectures provide meaningful ways to reflect on lessons fromboth engineering practice and classroom education.Development of UnLectureThe UnLecture
response to these trends, more engineering courses are being designed to incorporate moreinnovative, creative problem-solving skills2,3,4,5. Some examples include field trips or minicompetitions as a creative model to encourage creativity6. In addition, problem-based learningand critical thinking skills in the context of real-world problems have been integrated intoengineering education to facilitate students’ divergent thinking during the idea generation phase7.Among them, the most common instructional approach in engineering education is open-endeddesign projects, where the target product is not defined in order to allow creative opportunities3,5.One argument in favor of open-ended design projects is that students reflect on their owncreative
entrepreneurial mindsetin students, particularly engineering students (who work at the forefront of design, technology,and new product development). One such pedagogical intervention is photovoice, which hasbeen widely used in educational, social science, health, and non-traditional literature [3] as aresearch approach to problem-solving through the use of photo (e.g., image) and voice (e.g.,narrative reflection). Photovoice is based on three primary goals: 1) enable individuals to reflecton existing issues and evaluate their strengths and weaknesses, 2) promote critical dialoguethrough group discussions, and 3) initiate a call to action to drive social change. In recent years,photovoice has been extensively used in engineering education research to
forfuture success even with low college entrance exams.These previous studies have provided the basic question for the new study; are learning stylescorrelated with discipline? Felder and Silverman (1988) sought to identify mismatches betweenlearning styles and the teaching styles of engineering faculty through a survey instrumentdeveloped from the learning style model from David Kolb (1984). The Felder and Silvermanmodel of learning styles is exemplified by a survey instrument developed called the Index ofLearning Styles (ILS) (1988). This instrument will be used as a basis for this study as well. TheILS includes active or reflective, sensing or intuitive, visual or verbal, and sequential or global.The survey instrument builds upon Kolb’s learning
instrumentation is to drive ongoing cycles of continuousimprovement in teaching with a focus on transforming student learning. Owing to theongoing, dynamic practices of reflective educators, pedagogy and plans iterativelyevolve. These changes in practice exist in a complex environment that has the potential toprofoundly impact students’ ability to engage with and internalize content. Given thisenvironment, instrumentation is deployed to collect data in a process of developmentalevaluation while proactively responding to student learning and development throughdisaggregated data. This work equips educators with information to support thedevelopment of prototypes and innovations that strive toward providing undergraduatestudents with authentic, deep, and
encouraged to explore a range of possibleinternships. With the approval of the program director, each student makes a commitment for asummer role which will contribute to advancing technical innovation in a real organization.Because each internship is also anticipated to have educational value, the program provides asupporting structure to help each internship experience become a student’s “ultimate elective”.Since the launch of the program, formal and informal assessments of each student’s learningfrom their own internship have been integrated into the program curriculum as part of theprogram design. Initially, learning assessment was primarily from written journal entries and afinal paper of accomplishments and reflections. In recent years
. James John Bale Jr., University of GeorgiaDr. Nicola W. Sochacka, University of Georgia Nicola W. Sochacka is the Associate Director of the Engineering Education Transformations Institute (EETI) in the College of Engineering at the University of Georgia. Dr. Sochacka’s research interests span interpretive research methods, STEAM (STEM + Art) education, empathy, diversity, and reflection. She holds a Ph.D. in Engineering Epistemologies and a Bachelor of Environmental Engineering from the University of Queensland.Dr. Joachim Walther, University of Georgia Dr. Joachim Walther is an Associate Professor of engineering education research at the University of Georgia and the Founding Director of the Engineering Education
language.Given the diversity within this field, engineering education students’ experiences in this journeycan be very different from one another during their doctoral years. Like any other diversesettings, engineering education students may have needs in common or completely differentwhich required different ways of support.In this study, we are a group of engineering education students and alumni who speak English asour second language (ESL). Using co-operative inquiry, we aimed to reflect on our doctoraljourney in engineering education and highlight the challenges we went through and ways wewere able to overcome them. We are taking the positionality of researcher to participant toexamine our experiences. The challenges are mostly centered over
individual ‘portrait’ of themselves, which is then used as a starting point fordiscussion, training, interaction with others, and conscious, insightful reflection. With the KGI,each student receives a personal profile comprised of numerous action items to develop groupskills at his or her own pace. Our work in this freshman course provides the basic training on theutilization of information provided by these instruments, asks each student to pick two skillsfrom their personal KGI profile, and has developed assignments to promote reflection on theirimplementation of KGI skills and personal behaviors.INTRODUCTION/ MOTIVATION“Today, the Myers-Briggs Type Indicator (MBTI) is the most widely used psychologyinstrument in the world for the normal
instruction on different leadership theories (situational,transformational and servant)19,20,21, and were asked to reflect on how their ropes courseexperience related to the different leadership styles they just learned about, and about importantlessons learned during the academy.Purpose of assessmentThe purpose of the assessment plan developed in this study was to investigate how theLeadership Academy activities tied to the outcomes of the KEEN program. Additionally, thisassessment was used to gauge the student perspective on the leadership academy and identifyaspects of the academy that students found important to their current academy pursuits and futurecareers in STEM fields. Outside the context of the KEEN program, the Leadership Academy andthis
to accomplish the mission and improve the organization,” [26, p. 13]. Anyorganizational member, regardless of rank, can be an effective leader if she possesses theintellect, presence, and character (attributes) to lead, develop, and achieve (competencies). Figure 1: ADP 6-22 Logic Map [26, p. 9]Figure 1 visually displays the leader requirements model and highlights the Army’s Be, Know,Do framework which resonates with college students. Attributes (Be and Know) arelongstanding characteristics of the individual, refined through experience and reflection, whilecompetencies (Do) are learned skills developed through training and education. West Point’sapproach to leader development aligns with Army doctrine but has
Session 502 INCORPORATING LIBERAL EDUCATION CONCEPTS INTO ENGINEERING TECHNOLOGY SENIOR DESIGN COURSE AT MIAMI UNIVERSITY Suguna Bommaraju, Ron Earley, Dave Hergert Miami University, OhioINTRODUCTIONThe LEC (Liberal education council) at Miami University monitors and guides the incorporationof liberal education component in capstone course in the engineering technology department.Specifically, the focus points of the liberal education outlined in Miami bulletin1 are criticalthinking, understanding contexts, engaging with others, reflecting and acting. The senior
Friday Morning Session 2 - Faculty Benefits of Service-Learning in Meeting Learning Objectives: Examples from Air Pollution/Environmental Engineering Courses Melanie Sattler Civil Engineering Department University of Texas at Arlington AbstractService learning is “a teaching method which combines community service with academic instruction as it focuses on critical, reflective thinking and civic responsibility.”1 Dozens ofstudies have documented many benefits of service learning for students, including improved 1)ability to
and Employers (NACE) [6]Future Skills Framework DevelopmentActua developed the Future Skills Framework to capture and articulate the instructor experience,and to provide a foundation for additional support to member programs and their instructors. Inaddition, a strengthened instructor experience framework is seen to have potential for improvedrecruitment, training and retention of future instructors, increased transferability of the instructorexperience to future career opportunities, and increased quality and consistency in youthengagement by the network. The potential to shape a national, post-secondary work integratedlearning experience reflects activity by universities and affiliated organizations to betterdocument the contribution of
Concept MapsAbstractThis paper describes a work-in-progress study investigating the use of concept mapping forassessing students’ conceptual knowledge over a semester in a biomedical engineering modelingcourse. The concept maps are used to evaluate the evolution of students’ skills in developingmathematical models that describing biological systems and students’ specific contentknowledge as they complete problem-based learning projects. As students gain experiencedeveloping mathematical models to answer open-ended problem-based learning questions, wehypothesize that their conceptual understanding of mathematical modeling and of the biologicalsystems studied will increase. This improved conceptual understanding is reflected by conceptmaps with
will draw on research team meeting notes, formative feedback survey responses, andnarrative reflections from URFs to support our claims. Research leads also share theirperspectives on recruiting, onboarding and working with the URFs and describe some of themacro-ethical considerations that motivated their partnership with URFs [4, 5].Dr. Turpen and Dr. Radoff, the research leads, and a subset of URFs (K. Rahman, S. Bikki, K.Adkins, and H. Sangha) collaboratively developed this paper. We organize our findings into threeparts; we describe: (a) the multiple ways the research leads benefited from this collaboration, (b)the multiple ways the URFs have benefited from this collaboration, and (c) the joint workprocesses and routines within our
, and life science students [12]-[14], our programmay serve as a model for engineering educators on urban campuses.Here, we report on the first iteration of our (IN)SCRIBE Program. Eight students – five risingseniors, two juniors, and one sophomore – participated in the inaugural offering as (IN)SCRIBEScholars. Specifically, we present initial student reflections on the societal responsibilitiesbiomedical engineers need to consider to impact design solutions.Program DescriptionThe seven-week (IN)SCRIBE Program (Figure 1) encompasses four phases: 1) Pre-programTraining, 2) a one-week Innovation Boot Camp, 3) five weeks of Clinical Immersion Rotations,and 4) one week of Needs Refinement and Design. In the Innovation Boot Camp, participantslearn
, holistic, relational framework. The course consists of several separate-- butinterdependent—activities, such as group participation, readings, reflection, and a retreat.The purpose of this practice paper is to further interpret the (previously published) value of HILs,but within a leadership identity framework. Because of their positive impact on identitydevelopment, these Labs may hold promise as an environment in which students can develophealthy relational leadership processes. Three identity-based frameworks will be used tointerpret the influence of HIL structure and experiences: Leadership Identity Development(LID), self-authorship, and Community of Practice (CoP).This paper addresses the impact that experiential learning courses can have on
program’s learning strategies course employed a three-pronged approach towardsusing the LASSI. First, students took the assessment online at the beginning and end of thesemester. Second, students were prompted to reflect on their pre-intervention scores throughstructured reflection assignments at three points throughout the semester. Third, students weresupported by several campus resources in interpreting and improving their performance acrossthe ten LASSI dimensions. The following paragraphs detail these interconnected approaches ingreater depth.Students completed the 3rd Edition of the LASSI [6] once at the outset of the semester and oncemore at its conclusion. Students took the LASSI online, with the first administration due at theend of the
when anindividual reflects on that experience relative to their prior knowledge (reflective observation), Proceedings of the 2011 North Midwest Section Conferencedevelops a conceptualization to explain the experience (abstract conceptualization), and thentests their conceptualization (active experimentation). The results observed after testing one sconceptualization represent yet another concrete experience which can be reflected upon todevelop further conceptualizations to be tested and so on. Figure 1: Kolb cycle of learning.7 The types of questions/problems commonly found in engineering textbooks may fail toengage learners in deep levels of reflective observation as they may
online or on-sitecourses, in an exploratory way. Even though there are numerous resources available forintroducing EM, the TY4YS activity approach is very interactive and most importantly, insteadof teaching (or reinforcing) the entrepreneurial concepts first and then engaging in relatedactivities, the students first play, make mistakes, reflect and learn. When the concepts aresubsequently presented (or reinforced), they are more relatable and better retained.The activity starts with a military veteran describing veterans’ issues. The player's objective is tocreate an end-product to mitigate some of the challenging issues and showcase that end-productat an upcoming veterans conference. The players (students) will make a series of decisionsduring
detached from such a situation. We intentionally developed activities thatchallenge students’ thoughts and beliefs, so they connect their actions as students to their lives asworking professionals.We first examine ethics on a global scale by considering engineers’ roles in promoting globalhealth and wellbeing through sustainability. Students learn about green design andmanufacturing strategies through assigned readings, a video on cradle-to-cradle design, andgameplay. Students play the In the Loop ® board game, which teaches players about the finiteresources necessary for devices such as LCD screens, MRI machines, and wind turbines [1].Throughout the game, players develop strategies to manage limited resources using circulareconomies. A reflective
employers suggests a greater emphasis onattributes including flexibility, conscientiousness, integrity, problem solving, communication,and organizational skills [1]. ABET reflects these demands, outlining the desired skill-set ofengineering graduates to include: ● an ability to apply knowledge of mathematics, science, and engineering ● an ability to communicate effectively with a range of audiences ● an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors ● an ability to function on multidisciplinary teams and ● an ability to identify, formulate, and solve
design. In literature theyhave been shown to be an essential tool for (1) reflection, (2) documentation of the designprocess, (3) historical archive, (4) course grade, (5) incidental writing tool, and (6) instantassessment of course for instructor. The use of design notebooks as indicators of studentparticipation in team activities has been investigated.1 It was demonstrated that design notebooksare a good indicator of teamwork practices. Design notebooks have also been used to trackstudents’ cognitive patterns in engineering design.2 Well formulated design notebooks have been shown to have pedagogical and cognitivebenefits 3. To reap these benefits however, it is very important to teach the students how tocomplete an effective design
and problem solving concepts.This paper will describe the twelve week experience of a home schooled group engaged in theTWT program. Home schooling is a growing trend in the United States and it is estimated thattwo million American children are home schooled each year with this number increasing by 15-20% per year1. The students’ progress in this program was measured through specific reflectionquestions, as well as observations and reflections by the TWT facilitators and the cooperatinghome school representative and the parents of the home schooled students.The Toying With TechnologySM ProgramThe Toying With TechnologySM Program at Iowa State University has been reported on manytimes in the literature2-7. This program includes an