communication and business components in the engineeringprofession and includes a multi-disciplinary capstone design experience for which teams areeligible for student venture grants administered by the institution. Several multi-year grants havestrengthened the program through workshops, keynote speakers, faculty curriculum awards,student venture grants, and faculty incentives to work with industry sponsored student teams. Page 15.403.2Specifically, the College of Engineering received an invitation to participate as part of a largerinitiative to develop the Kern Entrepreneurship Education Network (KEEN). The invitation alsoprovided funding to develop
education, design and selection of materials, general materials engineering, polymer science, and characterization of materials. His research interests are in innovative education in engineering and K-12 engineering outreach. He worked on Project Pathways, an NSF supported Math Science Partnership, in developing modules for Physics and Chemistry and also a course on Engineering Capstone Design. He has also co-developed a Page 15.1149.1 Materials Concept Inventory for assessing fundamental knowledge of students in introductory materials engineering classes. He is currently working on NSF projects
Paper ID #10445Characterizing and Addressing Student Learning Issues and Misconceptions(SLIM) with Muddiest Point Reflections and Fast Formative FeedbackProf. Stephen J Krause, Arizona State University Stephen J. Krause is professor in the Materials Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, capstone design, and introductory materials science and engineering. His research interests include strategies for web-based teaching and learning, misconceptions and their repair, and role of formative feedback on conceptual change. He has co
their design activities may differ significantly from their actualperformance in solving “messy” open-ended problems. In the Pacific Northwest, multi-university participants in aNational Science Foundation supported project (Transferable Integrated Design Engineering Education, TIDEE)have implemented and disseminated a Mid-Program Assessment instrument for assessing engineering studentdesign competency. One part of the instrument requires student teams to document (e.g., self-report) their designdecisions and processes while engaged in a design task. These written self-reports are scored using a rubric thathas demonstrated a high inter-rater reliability. We are interested in comparing the scores derived from these self-reports with measures of
engineering and education, capstone design, and introductory materials engineering. His research interests are evaluating conceptual knowledge, miscon- ceptions and their repair, and conceptual change. He has co-developed a Materials Concept Inventory for assessing conceptual knowledge of students in introductory materials engineering classes. He is cur- rently conducting research with NSF sponsored projects in the areas of: Modules to Promote Conceptual Change in an Introductory Materials Course, Tracking Student Learning Trajectories of Atomic Structure and Macroscopic Property Relationships, and Assessing the Effect of Learning Modes on Conceptual Change.Michelene T.H. Chi, Arizona State University Micki Chi is a
U.S. Air Force. After completing his Ph.D. in 2002, he returned to the Air Force Academy where he has been on the faculty ever since. The current focus of Dr. Wood’s research is the continued development of empirical testing methods using similitude-based approaches. This approach provides significant potential for increasing the efficiency of the design process through a reduction in required full-scale testing and an expansion of the projected performance profiles using empirically-based prediction techniques. Dr. Wood’s research also includes the development of micro air vehicle systems using innovative conceptual design techniques for current technology implementations, as well as futuristic projections
department is responsi- ble for ensuring the quality training of program evaluators, partnering with faculty and industry to conduct robust and innovative technical education research, and providing educational opportunities on sustainable assessment processes for program continuous improvement worldwide. She is Principal Investigator of a NSF-funded validity study of her direct method for teaching and measur- ing the ABET engineering professional skills and is adjunct associate professor in the School of Electrical Engineering and Computer Science at Washington State University where she co-teaches the senior design capstone sequence.Dr. Khairiyah Mohd-Yusof, Universiti Teknologi Malaysia Khairiyah Mohd-Yusof is
small group activities. I also reliedupon the teaching philosophy that I had outlined during the diversity and learning stylesworkshop.The CPPD syllabus incorporated a wide range of topics that I felt were consistent with mymission and teaching philosophy. Topics varied from developing a positive self-image andattitude, time management, developing a career plan and successful career management toproblem solving, analysis, technical writing, and interpersonal skills. I also identified bothtraditional and non-traditional activities to accompany my lesson units, such as journal writing,role-playing and solving logic problems. The course culminated with a final project for whichstudents had to prepare and present a very detailed career plan in
Engineering courses taught through the author‟sprogram, the College of Engineering has an Engineering Internship course that facilitates coursecredit for real world, off-campus experience with employers. Although rarely an avenue forpure/basic research, it does support applied research and development activities of undergraduatesunder the supervision of engineering personnel at regional industries.Research can also be tied to the Honors Program at the author‟s institution through HonorsSenior Thesis courses in which students, directed by an advisor and a committee which alsoincludes the Director of the Honors Program, define and conduct a high-level research, scholarly,or creative/artistic project, and complete and defend a comprehensive thesis over
safety, speed, and productivity, (3) to ensure uniformity, reliability, and excellence of product quality, (4) to achieve overall efficiency and economy. Page 15.1088.3Subramanyan states that the topic covers a “variety of documents including standards,specifications, codes of practice, recommendations, guidelines, nomenclature and terminology,and so on.” A document may also be a “composite” of these.Linda Musser (1990)4 wrote a straight forward overview of “Standards Collections for AcademicLibraries” including why a library should collect standards and described ways to build thecollection while Taylor (1999) does a similar project but
outcomes of our assessment was an increase in the number of courses offered as wellas an increase in the frequency in which we can offer them. As a result of our assessment effortswe have been able to expand our physics program by adding the following upper-level courses: Astrophysics Mathematical and Computational Physics Physics Capstone Seminar Statistical Mechanics Waves and OpticsPrior to 2007, the physics program included two “tracks” that students could follow as theyprogressed through the curriculum. These tracks were in computational and applied physics.Since our initial assessment, we’ve added a traditional physics track and the applied physicstrack is now a track in chemical physics. We have also been able
components of the engineering curriculum—in engineering sciences, engineering design, and humanities and social science courses; that work resulted in Engineering Justice: Transforming Engineering Education and Practice (Wiley-IEEE Press, 2018). His current research grant project explores how to foster and assess sociotechnical thinking in engineering science and design courses.Dr. Ann D. Christy P.E., The Ohio State University Ann D. Christy, PE, is a professor of Food, Agricultural, and Biological Engineering and a professor of Engineering Education at the Ohio State University (OSU). She earned both her B.S. in agricultural engineering and M.S. in biomedical engineering at OSU, and her Ph.D. in environmental
construction management, innovative project delivery systems, and construction automation and robotics. He received a B.S. degree in civil engineering from the University of Cincinnati and M.S. and Ph.D. degrees from Purdue University, and is a registered Professional Engineer in Wiscon- sin. Russell began his academic career in 1989 as an Assistant Professor in the CEE Department. Over the past 22 years, he has earned a reputation as a leader in education, research, and service to the civil en- gineering profession through championing diversity, leadership, innovation, and enhanced education for future civil engineers.He is Co-founder of the Construction Engineering and Management program at UW, Madison, one of only seven
University of Colorado Boulder. Her teaching focuses on fate and transport of contaminants, capstone design and aqueous chemistry. Dr. Bolhari is passionate about broad- ening participation in engineering through community-based participatory action research. Her research interests explore the boundaries of engineering and social science to understand evolution of resilience capacity at family and community level to sustainable practices utilizing quantitative and qualitative re- search methods.Dr. Daniel Ivan Castaneda, James Madison University Daniel I. Castaneda is an Assistant Professor in the Department of Engineering at James Madison Univer- sity. Daniel earned his PhD in 2016 and his Master’s in 2010, both in civil
billioncompanies spend annually on diversity programs to create opportunity and inclusion strategiesfor minority groups5,6, including black engineers. Organizations typically enter into diversityprograms for one of two reasons: legal obligation or fairness4. There are many case studies ofsuccessful organizational diversity initiatives, and multi-organization case studies aswell13,45,48,49,50,51,52,53,54. Organizational diversity efforts may manifest themselves in trainingprograms and employee feedback47; as components of performance evaluations, in the form ofinclusion projects, as social networking, as the responsibility of management, in the form ofmentoring systems, and in affinity groups45
classstructure and teaching practices allows researchers and instructors to determine how to augment aclass for a clearer and easier learning experience.There are many related articles that focus on at least one of the domains of learning for engineeringstudents; however, most have different focuses or are not directly applicable to this paper’sresearch. For example, many related studies were testing or creating a tool used to evaluate a class'sability to teach with one or more of the domains, versus testing how to better teach one or all ofthe domains or discover how students learn with each domain [8-13]. One of these studies createda teaching template for schools so they are more aware of what engineering students should learnduring their capstone
PhD student in the Department of Mechanical Engineering at UBC. Her research focuses on equity issues in engineering education, particularly looking at the impacts of engineering outreach programs on historically marginalized groups in STEM.Shouka Farrokh, University of British Columbia Shouka Farrokh is an undergraduate student pursuing Psychology at The University of British Columbia. She contributes as a research assistant in Engineering Education projects focusing on STEM Outreach initiatives.Dr. Katherine Lyon, University of British Columbia Katherine Lyon is Assistant Professor of Teaching in the Department of Sociology at the University of British Columbia. Katherine’s research merges sociology of education
, an outcome spaceemerged with five main categories of description about the kinds of obstacles studentsencountered in regard to the hiring process in computing and industry practices: Uncertainty,interview techniques, time demands of preparation, anxiety management, and improvinginclusivity. Yet, our goal was not to focus on the issues faced, but the solutions to resolve them.As such, the perceptions of the students’ experiences guided the creation of a set ofrecommendations for students, academia, and industry, to mitigate concerns with the currentprocess and to consider avenues for improvement.1 IntroductionOver the next decade, computer and information technology occupations are projected to rise11% [1]. However, disparities in the
professional degrees. Prospective graduate students often perceive the lengthy time-to-degree and the rigid “path” for degree completion as limiting to their futures. Several discussants referenced the alternative options industry collaboration may provide, e.g., the Professional PhD, wherein graduate students would spend a more abbreviated period within the classroom and enter the field while being “co-mentored” by academe and industry to complete dissertation or research projects. ≠ Address impacts of climate issues on graduate students and education. Increasing the “visibility” of women faculty and fostering faculty-student interaction may help retain women graduate students. Developing cohorts
AC 2012-4544: INOCULATING NOVICE SOFTWARE DESIGNERS WITHEXPERT DESIGN STRATEGIESDavid R. Wright, North Carolina State University David Wright earned his Ph.D. in computer science from North Carolina State University. He is currently a Research Associate in the Computer Science Department, overseeing the day-to-day operations of four different research projects. Wright has taught a variety of undergraduate courses at NCSU and other local institutions. His research interests include software design and engineering education, focusing on ways to help students think more like engineering professionals than students, as well as developing teaching and learning tools and strategies that help keep students interested in
study created ateaching template for schools so they are more aware of what engineering students should learnduring their capstone research [15]. Another study tested the program EvalTOOLs 6 to determinehow well a class performed in connecting to each of the three domains and how it may be helpfulfor determining which domains need more development [13]. A related study tried to evaluateeach hierarchical level with an analysis of students’ grades [6]. Other studies attempted to developnew analytic tools to evaluate students learning with the cognitive domain [7], [14].Another related study focused on testing a few hierarchical levels instead of reviewing learningthrough all of the hierarchical levels of the cognitive domain [8]. One article
the program context and changes,participant selection, and the interview questions and analysis.While Engineering Science continues to promote theoretical understanding, the program hasplaced greater emphasis on design in more recent years due to accreditation requirements andother motivators. Curricular experiences of more recent graduates may differ from those ofearlier graduates who did not experience cornerstone, middle-year, or capstone design courses asopportunities to apply their theoretical knowledge or learn through different modes. There havealso been program, faculty, and university-level efforts to provide greater support for learners, sostudents in the past may have been more unsupported in navigating and adapting to the
. Although students worked in groups, they were required to hand in individual solutions, which were another component of each student’s professionalism grade. The TAs graded one capstone problem each week and gave limited written feedback. • Exit Quiz + debrief (50 mins/week). Every Friday, following the Problem Set, the students took a zero-stakes Exit Quiz on the material for the week. Although not a component of their grade, the Exit Quiz was designed to closely emulate an exam question. Following the quiz, the instructor went over the solution in class, and provided a detailed rubric for the students to grade themselves. • Exam Feedback (2 times per quarter). Summative assessment of the students was accomplished the same way as
facilitate learning elements of programming in the context of thelaboratory experiment.Integration of scientific inquiry. The physics tasks consisted of hands-on activities usingPASCO equipment and PASCO Capstone software, which are aligned with the three principlesdefined by course textbook (i.e., linear momentum, energy, and angular momentum principles),along with guided activities in Python programming.Students engaged in two ED challenges throughout the laboratory sessions. This study focusedon the first ED challenges that worked as an introduction to design experience for the students.The next section describes in detail this first design challenge.Engineering Design ChallengeStudents completed the first design challenge in labs 0 through 5
States Military Academy with a B.S. in Environmental Engineering and obtained an M.S. from both the University of Missouri at Rolla in Geological Engineering and the University of Texas at Austin in Environmental Engineering. Most recently, he graduated with his Ph.D. from the Colorado School of Mines in Civil and Environmental Engineering. He teaches Environmental Science and Environmental Engineering Technologies. He also serves as a faculty advisor for the senior capstone design course and several independent research projects.Lt. Col. Andrew Ross Pfluger, United States Military Academy Lieutenant Colonel Andrew Pfluger, U.S. Army, is an Assistant Professor and Academy Professor in the Department of Geography and
Engineering and Technology (ABET) has made anexplicit statement in its criteria that engineering programs must demonstrate that their students arehave “an understanding of professional and ethical responsibility”. Many engineering schoolshave developed various trails to deliver ethical contents, either through creating standing aloneethical courses, or through embedding the ethical topics in traditional engineering courses,typically capstone design. This pragmatic approach has been supported by engineeringprofessional societies such as NSPE, ASME, IEEE, etc. which historically have played a crucialrole in shaping the content of US engineering ethics education (Downey & Lucena 2004). Underthe general principle of “doing no harm”, each association
that theAero/Astro department has the most prerequisites in the University, but the four-yeargraduation rate is near the top and fewer students are dropping out. With the coming or ABET 2000, hands-on learning was reintroduced in manycourses. Combined with the integration of Junior Lab (now called Aerospace Lab), and Page 14.1218.9building, testing and flying hardware for their capstone design class, undergraduatestudents are getting the balance of the fundamentals, with the experience of working inteams. Georgia Institute of
learning contexts.Dr. Tanya Faltens, Purdue University, West Lafayette Tanya Faltens is the Educational Content Creation Manager for the Network for Computational Nanotech- nology (NCN) which created the open access nanoHUB.org cyber-platform. Her technical background is in Materials Science and Engineering (Ph.D. UCLA 2002), and she has several years’ experience in hands-on informal science education, including working at the Lawrence Hall of Science at UC Berkeley. While at Cal Poly Pomona, she taught the first year engineering course, mentored student capstone re- search projects, and introduced nanoHUB simulation tools into the undergraduate curriculum in materials science and engineering and electrical engineering
Industrial Engineering and an Honors Bachelor in Me- chanical Engineering from the University of Toronto. She also has a Master of Applied Science in Collab- orative Program in Engineering Education. Her thesis investigated team level factors affecting innovation in multidisciplinary capstone design course. In addition to her research in engineering education, she has been involved as a teaching assistance with more than four engineering design courses from first year to fourth year.Prof. Chirag Variawa, University of Toronto Professor Chirag Variawa is Director of First-year Curriculum at the University of Toronto, Canada. He received his Doctorate in Industrial Engineering, focusing on Language Inclusivity in
DELIBERATE LONGITUDINAL CURRICULAR INTEGRATION: TOPICAL LINKAGES AND CONCEPT REINFORCEMENT Barry L. Shoop, George A. Nowak, and Lisa A. Shay United States Military Academy, Department of Electrical Engineering and Computer Science, West Point, New York, 10996 U.S.A. email: Barry.Shoop@usma.eduAbstract. Students in many engineering programs feel that their educational experience consists of a series of isolated courses that build expertise in discrete topical areas. The only time these discrete topics are integrated is in a capstone engineering project during their senior year. Understanding how topics covered in one