areas. Women's sense of belonging is crucialto higher education institutions, especially in highly masculinized careers such as engineering.It increases academic motivation and can influence their success in higher education.However, statistics worldwide show that the increase in the sense of belonging and, thus, inthe participation of women in STEM areas has not risen enough to reduce the gender gap. Inthe current research work, we present data collected over one semester in an EngineeringSchool at a large private university in Chile. Our main objective is to diagnose and analyzethe students' sense of belonging in social and academic areas, their self-efficacy, andperceived institutional support from a gender perspective. With a quantitative
to emphasize the differences between the academicand professional worlds, allowing students to be more prepared for life after graduation [21].One approach to combatting the negative impact of workplace culture is through mentorship.Professional engineer Kim Parker Brown has said that “One cannot overestimate the importanceof having someone who believes in you and is willing to act as a mentor” [9, p. 49]. Mentors canhelp a mentee transition into the professional workforce by providing guidance and alleviatingstress, especially in the beginnings of a career [10]. For women in STEM, having a mentor of thesame gender has been found to be particularly effective [8]. Hernandez [8] concluded that havinga mentor of the same gender makes it more
Paper ID #35106STEM Enhancement in Earth Science (SEES): A reimagining of an onsiteNASA/TSGC/UTCSR high school internship programMrs. Celena Miller, University of Texas Austin - Center for Space Research Celena Miller is the Senior Outreach Program Coordinator for the Texas Space Grant Consortium in Austin, Texas. She has worked for over twelve years in education. During that time, Celena has worked in the Texas public school system, promoting earth and space education to students, teachers and the community through curriculum, professional development, science nights, and career exploration. Celena has been recognized for
the University of Nebraska-Lincoln where he directs the Perceptual Systems Research Group. His research interests include information, video and signal processing, engineered healthcare and engineering education. He was appointed Dean of the College of Engineering in May 2018.Dr. Trish Wonch Hill Dr. Trish Wonch Hill is an applied sociologist who collaborates with scientists across STEM disciplines to investigate how to spark STEM career interests during childhood and adolescence. She is particularly interested in how to find STEM pathways for youth who belong to historically underrepresented groups (girls, rural youth, race/ethnic minorities).Mr. Michael LoehringDr. Emily Griffin Overocker, University of Nebraska
educational attainment and schooling experiences of Mexican descent youth in the mid-20th century, and higher education student success.Dr. Valerie Martin Conley, University of Colorado, Colorado Springs Valerie Martin Conley is dean of the College of Education and professor of Leadership, Research, and Foundations at the University of Colorado Colorado Springs. She previously served as director of the Center for Higher Education, professor, and department chair at Ohio University. She was the PI for the NSF funded research project: Academic Career Success in Science and Engineering-Related Fields for Female Faculty at Public Two-Year Institutions. She is co-author of The Faculty Factor: Reassessing the American Academy in
prior research experience. In total 20 students(ten per year) participated in the program and worked on individual project topics under theguidance of faculty and graduate student mentors. Unlike a typical REU program, theCybermanufacturing REU involved a few unique activities, such as a 48-hour intense design andprototype build experience (also known as Aggies Invent), industry seminars, and industry visits.Overall, the REU students demonstrated significant gains in all of the twelve research-relatedcompetencies that were assessed as a part of formative and summative evaluation process. Whilealmost all of them wanted to pursue a career in advanced manufacturing, includingCybermanufacturing, the majority of the participants preferred industry
Education, 2020 Creation of “The Engineering Student Experience” podcast to enhance engineering student readiness for school and the workforceAbstractThis “Complete Evidence-based Practice” paper describes an institutional strategy to supportstudent success using technology. Over the past decade, audio podcasts have become a popularformat for entertainment, news, and education. Although there are many podcasts that focus onscience and engineering topics, none of them focus exclusively on helping students make moreinformed decisions about whether to pursue engineering, which engineering discipline bestmatches their interests, and how to prepare for a career as an engineering professional. This workdetails the creation and distribution
continuing GAANN fellows there are 6 URMs, andall of 14 continuing GAANN fellows are making timely progress toward their PhD degrees.The fruitful efforts at the doctoral level in the UTA Mathematics Department have been coupledwith efforts at the undergraduate level. There also have been efforts to establish strong links witharea middle schools and high schools and civic organizations, with the goal of helping middleand high school students learn about careers in the mathematical sciences and encouraging themto attend college. All such efforts have resulted in positive changes at every level, and the UTAMathematics Department was recognized nationally in 2013 by the AMS (AmericanMathematical Society) as the winner of the AMS Award for an Exemplary
research focus relates to STEM career pathways (K-12 through early career) and conceptual understanding of core engineering principles. She is currently a Member-at-Large for the Pre-college Division of ASEE. Dr. Carrico’s consulting company specializes in research evaluations and industry consulting. Dr. Carrico received her B.S. in chemical engineering from Virginia Tech, Masters of Engineering from North Carolina State University, MBA from King University, and PhD in Engineering Education from Virginia Tech. Dr. Carrico is a certified project management professional (PMP) and licensed professional engineer (P.E.).Dr. Holly M. Matusovich, Virginia Tech Dr. Matusovich is an Associate Professor in Virginia Tech’s
.13,14 There is a potential fortheir previous work to be explored more thoroughly in the curriculum of a new course project.Other positive motivations can be classified as individualistic. These reasons are closely relatedto psychological enjoyment or behavioral preferences. The common student responses in thiscategory are being good at math and science, liking to build a final product, and understandinghow things work.10,11,13,14 Behavioral reasons have been shown to be the most popular, which iswhy they should be classified into subcategories like the ones above to determine what is moreimportant. The individualistic reasons, or the opposite end of the altruistic spectrum, are oftenreferred to as utilitarian. This includes career opportunities
and have strong existing ties to the land-grant universitythrough programs funded by Federal and private agencies. Each Alliance institution identifiednew initiatives for this project to complement those already in place, providing synergy towardthe overall project goal. These initiatives include focused and enhanced recruiting; developmentof detailed transfer guides; training for admissions personnel and academic advisors; studentenhancement programs such as student research opportunities, internships, math immersion, andalternative spring break; a focus on career counseling; formal and peer tutoring; andimplementation of improved student tracking. A particular focus of the KS-LSAMP isrecruitment and retention of military veterans in STEM
Page 26.1325.8developmental relationship that is premised on a multiple mentor approach in which benefit canbe gained from a variety of experiences and people throughout a student’s career. This can serveto widen a student’s learning context within and outside of the University19. The Penn StateHarrisburg NSF STEM Scholarship Peer Mentoring Program is designed to assist and supportfreshman STEM students transitioning to the first year of college. The goal of the program is tohelp scholars develop academically, socially, and personally. Peer mentoring is a collaborativeeffort between upper class STEM students and first year STEM scholars. This collaborationdemonstrates and models a successful college transition, and guides first year students
outcome-based educational framework. She has also incorporated theories on social cognitive career choices and student attrition mitigation to investigate the effectiveness of institutional interventions in increasing the retention and academic success of talented engineering students from economically disadvantaged families. She’s also involved in a project that explores the relationship between the institutional policies at UPRM and faculty and graduate students’ motivation to create good relationships between advisors and advisees.Prof. Oscar Marcelo Suarez, University of Puerto Rico, Mayaguez Professor Oscar Marcelo Suarez joined the University of Puerto Rico - Mayaguez in 2000. He holds a BS in Aeronautical &
. Her current research is aimed at investigating intersectional stigma and how it affects HIV-related outcomes in Tampa Bay by applying participatory qualitative methods. Dr. Gabbidon also teaches graduate and undergraduate courses in Psychology including Cultural Competence, Program Evaluation, and Health Psychology.Dr. Saundra Johnson Austin, University of South Florida Dr. Saundra Johnson Austin has dedicated her career to promoting diversity, equity, inclusion, and belonging of students and professionals in science, technology, engineering, and mathematics (STEM) education and careers. Her research is grounded in the effective implementation of STEM curricula in urban middle schools. Johnson Austin began her
decade, education and training pedagogies and delivery processes havechanged dramatically. Currently, learners of all ages clamor for more flexibility in training. Thetraditional educational approach of full degrees in a discipline is being supplemented, and insome cases replaced, by shorter, focused training in specific skills sets. Micro-credentials areevidence of skills achieved and knowledge acquired. Stackable credentials resulting in micro-credentials are also on the rise. These offerings range from 100% on-line to a mix of face-to-faceinteractions over short periods of time (e.g., workshops that are 2 to 5 days). The delivery ofmost short courses, often advertised as fast tracking your career, preparing students to be work-force ready
minor in Applied Computing for Behavioral and Social Sciences (ACBSS), and is a co-advisor for the minor. Additionally, she teaches the first course in the minor series, which covers the application of Python to current social science topics, as well as the use of programming in careers such as data analysis, user experience research, and econometrics.Jennifer Avena, San Jose State UniversityDavid Schuster, San Jose State UniversityWendy Lee, San Jose State UniversityDr. Belle Wei, San Jose State University Belle Wei is Carolyn Guidry Chair in Engineering Education and Innovative Learning at San JosA©˜ State University (SJSU). Previous roles include: Provost and Vice President for Academic Affairs at California State
chapters, proceedings, and technical reports. ©American Society for Engineering Education, 2023 Creating a Pipeline of Future Engineers in Texas (Evaluation) (DEI) ABSTRACTIn Texas, the engineering program of study is one of multiple Career and Technology Educationpathways a school district may offer. The curriculum for these pathways can be adopted fromcommercial providers or locally developed by school districts. Project Lead the Way (PLTW)Engineering is a curriculum that can be adopted by schools in Texas to fulfill the EngineeringSTEM pathway. This study followed cohorts of PLTW students to determine what impact, ifany
. Vice Chancellor for Research of the Texas A&M University System, which is comprised of 11 universities, seven state agencies, and a health science center. At the same time, she served as the founding director of the Texas A&M Energy Institute. She is also Professor of Electrical and Computer Engineering at Texas A&M University in College Station. Dr. Maldonado has had connections to NSF throughout her career. She is the immediate past chair of the NSF Committee on Equal Opportunities in Science and Engineering (CEOSE). From 1999 to 2001 she served as Program Director of Engineering Research Centers in the NSF Directorate for Engineering. Dr. Maldonado earned the Ph.D., M.S.E.E., and B.E.E. with Highest
Jensen, University of Illinois at Urbana - Champaign Karin Jensen, Ph.D. is a Teaching Assistant Professor in bioengineering at the University of Illinois Urbana-Champaign. Her research interests include student mental health and wellness, engineering stu- dent career pathways, and engagement of engineering faculty in engineering education research. She was awarded a CAREER award from the National Science Foundation for her research on undergraduate mental health in engineering programs. Before joining UIUC she completed a post-doctoral fellowship at Sanofi Oncology in Cambridge, MA. She earned a bachelor’s degree in biological engineering from Cornell University and a Ph.D. in biomedical engineering from the
Joyce B. Main is Associate Professor of Engineering Education at Purdue University. She received an Ed.M. in Administration, Planning, and Social Policy from the Harvard Graduate School of Education, and a Ph.D. degree in Learning, Teaching, and Social Policy from Cornell University. Dr. Main examines student academic pathways and transitions to the workforce in science and engineering. She was a recipi- ent of the 2014 American Society for Engineering Education Educational Research and Methods Division Apprentice Faculty Award, the 2015 Frontiers in Education Faculty Fellow Award, and the 2019 Betty Vetter Award for Research from WEPAN. In 2017, Dr. Main received a National Science Foundation CAREER award to examine
. Itis often seen that potential chemical engineering students who are interested in careers in medicinetake a pre-medical route or make a switch to bioengineering. Chemical engineering as a major,though, teaches students a number of invaluable concepts and fundamentals that can be applied toprojects involving the life sciences and medical field.The lack of understanding of the opportunities for chemical engineers may be a reason for the lowretention rates as a major, especially for female undergraduates, as they are not exposed to theopportunities that interest them, such as biomedical applications, early enough in theirundergraduate careers. Specifically, at Washington State University women represented only15.7% of the total engineering
4 10. K-12 – Schools, Teachers, Administrators, Districts 11. Parents 12. American Citizens 13. Media 14. Other – stakeholder not specified Actions suggested to “Help girls recognize their career-relevant skills.” Recommendation broaden participation “Improve access to all postsecondary education” in in STEM. “Changing the context of test-taking to eliminate stereotype threat.” Decade in which 1. 1970 recommendations 2. 1980
the state and regional level and an e-learning platformhosted by the College to provide dissemination of the resources for K-16 instructors and studentsboth statewide and nationally.B. Introduction:Each of the NSF-ATE projects at Orangeburg-Calhoun Technical College has worked closelywith other two-year colleges and with K-12 schools in the College’s service area along with K12systems throughout the state to develop and/or enhance the pipeline from K-12 into STEMprograms. The first project in this series of three (Diverse Engineering Pathways: CurriculumInnovation and Best Practice for Recruitment, Retention and Advancement of EngineeringTechnology Majors) was designed to promote access to STEM careers and provide courses forunder-prepared
without a transfer to an AI, or majors in Mathematics, Physics orComputer Science. The project has 3 major goals: 1) improve the enrollment of students in engineering relateddegree programs at Jacksonville University, 2) improve enrollment of underrepresented groupsin engineering related disciplines at Jacksonville University and 3) improve retention throughgraduation or transfer to an affiliated institution in engineering-related disciplines. Programgoals are met through targeted support of the student in co-curricular and extra-curricular areas.Co-curricular Activities (Maria) MEPS program arranged a number of co-curricular activities and facilities for the students sothat the students can be better prepared for their careers. Career
change its curriculum. However, it gives programsthe flexibility to create programs that best meet local and regional needs. Over the long term,this will change the body of knowledge possessed by mechanical engineers, for not everyonewill have the same background in the two key areas.Professional SkillsProfessional Skills can be thought of as skills or career competencies which are often not taughtin the curriculum but that are practiced and acquired during the education process. They areconsidered “value-added” skills which are essential to a person’s career. Discussion ofprofessional skills begins by listing broad categories, such as Doyle [25] proposes. She lists thetop five mechanical engineering professional skills (applicable to all
that aims toidentify whether engineering identity and academic motivation are correlated to the extent thatone may predict the other. Engineers face challenges which can result in both failure andtriumph. Studying the source of an individual’s motivation in conjunction with how theyperceive themselves as an engineer may provide long-term insight into ways in which one canpositively enhance the other. Previous work suggests that establishing a strong sense of identityin the workplace can result in greater career motivation [1]. We hypothesize that a stronger senseof engineering identity correlates with stronger academic motivation, and that ultimately onemay be used to measure the other with acceptable validity and reliability. This connection
Assistant Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering foster or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical Engineering and Ph.D. in Engineering and Science Education. Her research earned her a National Science Foundation CAREER Award focused on characterizing latent diversity, which includes diverse attitudes, mindsets, and approaches to learning, to understand engineering students’ identity devel- opment. She is the recipient of a
present and future. Additionally, the underrepresentation of females in the areas of science, technology, engineering, and mathematics (STEM) has been well documented [2]. It is crucial for girls who aspire to STEM careers to have access to learning environments that engage them in scientific and mathematical practices and that support a growth mindset. Including an art component with the integration of science, technology, engineering, and mathematics (STEAM) engages students in authentic problemsolving through creative design experiences [3]. Objectives In partnership with a National Science Foundation (NSF) funded Research Experience for Teachers (RET) program at the University of Washington’s Center for Sensorimotor Neural Engineering
also been recognized for his dedication to teaching in the College of Engineering (Rose and Everitt awards) and he is routinely nominated to the list of teachers ranked excellent at Illinois.Dr. Marcia Pool, University of Illinois, Urbana-Champaign Dr. Marcia Pool is a Lecturer in bioengineering at the University of Illinois at Urbana-Champaign. In her career, Marcia has been active in improving undergraduate education through developing problem based laboratories to enhance experimental design skills, developing a preliminary design course focused on problem identification and market space (based on an industry partner’s protocol), and mentoring and guiding student teams through the senior design capstone course
-generation student: “… and told me I wasn't good enough”)Students, overall, felt that on-campus student organizations helped bring liked minded peopletogether. However, students were overall split on the importance of these organizations to theircollege careers (general population: 49% yes, 51% no and first-generation population: 52.5%yes, 47.5% no). The first-generation students seem to have slightly stronger feelings on thestudent organizations than the general student population. Thirty-Six percent of the generalpopulation and 22.5% of the first-generation population were members of STEM organizationsand both groups felt these organizations were helpful. The general population wantedorganizations to focus on social / fun actives. The first