mathematics learning in the classroom. Currently, she leads all K-8 math, reading, science, and career exploration programs at MAEF. Ms. Dean is an experienced science educator having lead for years the development of informal curriculum and programs for the Science Centers in Alabama and Louisiana. She is highly experienced in curriculum development, writing, training and implementation. She has lead teacher development programs, as well as conducted pilot engineering design lessons in the classrooms. She works closely with STEM teachers in the 60,000 students Mobile County Public School System and has the reputation as a teacher leader and change agent. Her work with K-12 students, teachers and ed- ucation administrators
(VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teach- ing practices in design education, the effects of differing design pedagogies on retention and motivation, the dynamics of cross-disciplinary collaboration in both academic and
efforts that support students in their STEM education and career pathways pursuits. Prior to Science Foundation Arizona, Ms. VanIngen-Dunn served as President of CVID Consulting, build- ing on years of experience as engineer and project manager in human crashworthiness and safety design, development and testing, working for contractors in commuter rail, aerospace and defense industries. VanIngen-Dunn has an MS degree in Mechanical Engineering from Stanford University and a BSE degree in Biomedical Engineering from the University of Iowa. She serves on the University of Iowa’s College of Engineering Advisory Board, the YWCA Metropolitan Phoenix Board of Directors, and the Maricopa Community College Workforce
design teams and professional engineering societies, has been shown topromote engineering identity development, graduate school intentions, and plans to pursueengineering careers after graduation.In this work we posit that it is not simply differences in SES that separate highly involved,successful students in engineering from their less involved, less successful counterparts. Insteadwe postulate that such differences inform students’ socialization into engineering and, as a result,their patterns of co-curricular participation. Weidman defines socialization as “the process bywhich individuals acquire the knowledge, skills, and dispositions that make them more or lesseffective members of their society” [5]. In this study, we hypothesize that an
, University of Delaware Shawna Vican is the Director of the UD ADVANCE Institute and holds a secondary appointment as an Assistant Professor of Sociology and Criminal Justice at the University of Delaware. She received her Ph.D. in Sociology from Harvard University. An organizational sociologist, Dr. Vican investigates the adoption and implementation of new employment practices and corporate social behaviors. Across her research, Dr. Vican explores how organizational policies and practices, managerial behavior, and workplace culture shape individual career outcomes as well as broader patterns of labor market inequality. Her current research includes a qualitative study of corporate diversity management strategies and a
education as more inclusive, engaged, and socially just. She runs the Feminist Research in Engineering Education (FREE, formerly RIFE, group), whose diverse projects and group members are described at feminis- tengineering.org. She received a CAREER award in 2010 and a PECASE award in 2012 for her project researching the stories of undergraduate engineering women and men of color and white women. She has received ASEE-ERM’s best paper award for her CAREER research, and the Denice Denton Emerging Leader award from the Anita Borg Institute, both in 2013. She was co-PI of Purdue’s ADVANCE pro- gram from 2008-2014, focusing on the underrepresentation of women in STEM faculty positions. She helped found, fund, and grow
critical mass and peer relationships among students, application of learning, professional and career opportunities, and academic support services. The average size of our graduate level courses is approximately 15 students. Such class size often creates an engaging environment and students are much more likely to interact with the professor rather than listen passively during class, which contributes to student success. These students, while collegial and professional, compete with each other to be the best that they can be in their respective classes. Students entering in the MS in Engineering Technology program have solid backgrounds in one of the disciplines of engineering or technology and most of them progress well in the
Gender and Minority Status Differences Janet Liou-Mark1, Reina Li1, and Reginald Blake1 1 New York City College of TechnologyAbstractUndergraduate research is a notable best practice for keeping engineering students on pathwaysthat lead to Science, Technology, Engineering, and Mathematics (STEM) careers. The benefitsSTEM students (particularly females and underrepresented minorities) have obtained fromundergraduate research experiences are well documented. The New York City College ofTechnology in partnership with the City College of New York have been offering a year-longresearch program to students who attend an institution within the City University of New Yorksystem. Since the
ReadinessIn the rapidly evolving landscape of chemical engineering (CHE), the incorporation of datascience has gained increasing importance. To equip students with the skills required for a data-driven industry, it is crucial to understand their perceptions of data science and their willingnessto embrace it in their academic and professional journey. This study engages a diverse group ofchemical engineering students across different academic levels to explore their viewpoints ondata science and its potential integration into the academic curriculum.The instrument assesses four crucial constructs: interest, career aspirations, perceived value, andself-efficacy regarding data science. The study delves into students' prior exposure to datascience
Paper ID #42641Board 230: Contextualized Scaffolding for Engineering Faculty to Facilitatethe Adoption of EBIPsDr. Shane A. Brown P.E., Oregon State University Shane Brown is aprofessor and Associate School Head in the School of Civil and Environmental Engineering at Oregon State University. His research interests include conceptual change and situated cognition. He received the NSF CAREER that initiated his work studying engineering student and practitioners understanding and use of engineering concepts.Dr. Prateek Shekhar, New Jersey Institute of Technology Prateek Shekhar is an Assistant Professor – Engineering Education
who live in rural and reservationcommunities. Students hailing from these communities possess unique funds of knowledge[1] that will help to address various engineering problems.Because career choices are often made before middle school [2], it is important to startexposing all children to engineering in elementary school. Exposing elementary students toengineering requires elementary teachers to be prepared and confident in their abilities toteach engineering. Unfortunately, many elementary teachers feel underprepared to teachengineering [3] and may even avoid teaching it. Consequently, better understandingelementary teachers’ perceptions of effective and inclusive engineering education could beleveraged to help them build their engineering
Engineering Technology CurriculumAbstract Creation of micro-credentials in higher education allows practitioners to add a new skillfor career advancement or change, as well as working toward a degree by stacking them. After thecompletion of GE’s Wind Turbine Technical Training Program, Farmingdale State College facultycreated a " Wind Energy" micro-credential focused on Wind Turbine operation and design. Thisprogram covers an array of topics that mechanical, electrical, and civil engineering students cantake. While creating this micro-credential program, the College followed the success stories ofwind turbine professionals. Furthermore, Farmingdale State College was able to secure grants andbuild a state-of-the-art wind turbine technology
) development of a facultysuccess dashboard, ii) research alliance, iii) mentoring, and iv) engagement with the NSF EddieBernice Johnson INCLUDES Aspire Alliance. These initiatives have led to increased inter-university connections and collaborations, particularly through periodic speed mentoring sessionsthat provide a platform for discussing topics such as academic leadership, navigating tenure,proposal writing, overcoming biases and microaggressions, and balancing career and family. Thecollaborative effort has led to deep explorations of equity and transparency concerns facilitated bythe shared institutional context and governance. The paper aims to provide a comprehensiveaccount of these activities and the positive outcomes facilitated by these
interactive knowledge Near-Peer Mentoring: Near-peer mentors thrive in a supportive exchange, bridging generational gaps and fostering critical thinking [12- environment, gaining insights and building confidence. The experience 15]. readies them for their careers while benefiting from well-being strategies. Dual-form mentoring redefines traditional hierarchies, offering an
significantly lower level of belonging than major level students, men, andwhite students respectively. By creating a more connected and authentic student communityearlier in their academic career, we aim to increase levels of belonginess among these studentgroups and encourage continued connection and empathetic engagement throughout the students’college and professional experience.Assignment Description & Implementation DetailsThe story sharing assignment is assigned during the second week of a ten-week quarter in anovel introductory engineering course focused on developing a socio-technical mindset [5]. This2-credit course, ENGR 101: Engineering, Design, & Society, is a graduation requirement for allengineering and design students at Western
that the issue for engineering education is more ofrecruitment than retention. Further, Godwin et al.32 advised that efforts to recruit women shouldnot solely focus on building physics, math, or engineering identities but should also emphasizetheir empowerment in changing their world through engineering.Insight 2: Women students rely on their family members for choosing their careers Many authors have highlighted the influence of high school teachers on students’ careerchoices and preparation for the choices29,30,26,33, it appears that women students also rely on theirparents and other family members for making the choices34.Insight 3: The K12 system must help women students to develop social capital and navigationalcapital The K
experienced when participating in CS and Cybersecurity learning experiences. Data Collection and Analysis. We conducted interviews with 17 cadets and coded the transcripts using a priori codes. Findings. Sixteen of the cadets reported an increase in their knowledge and skills through self-reported grades and self-perceived knowledge gained through the CS and cybersecurity experiences. While all of the cadets indicated that the courses and extracurricular activities were beneficial and interesting, only two of the cadets indicated they wanted to have a career in the computer science or cybersecurity field. However, the findings indicated a lack of school personnel support, specifically at the guidance counselor
inquiry tool will be administered tocamp participants throughout high school to measure their interest in engineering, intent to majorin STEM and overall college readiness. In this paper we will describe how the program wasimplemented, the experience of the participants and share the data from the pre-post survey.Keywords: pre-college, gender, race/ethnicity, engineeringIntroductionCreating equitable access to science, technology, engineering, and mathematics (STEM)education and career opportunities should begin at a pre-college level in order to reduce gendergaps and racial/ethnic disparities. The United States government has invested in STEMdisciplines to address the low presence of URMs (African Americans, Hispanics, and NativeAmericans
genes that affect the immune system across age. I also work as a graduate assistant for both Maryland’s PROMISE AGEP and the Campus-Wide Career-Life Balance Initiative at the University of Maryland Bal- timore County. For my graduate assistantship, responsibilities that I have include, but are not limited to: organizing and staffing professional development workshops, conducting qualitative analysis on career- life balance events, archiving attendees demographics for each event, maintaining and updating websites, and presenting our work and findings at conferences. My main website is: amandalo.weebly.comMs. Erika T. Aparaka, University of Maryland College Park Erika Aparaka is a Ph.D. candidate at the University of
) Institute”. A certified coach, Grant consults and empowers STEM individuals at all levels in the academy towards excellence in career and professional development. Her workshops on mentoring and academic career development for NSF ADVANCE programs at Purdue, Cornell, Texas A&M, University of Toledo, UVA, Prairie View A&M, and the ADVANCE Annual PI meetings pro- mote STEM faculty development while providing diverse role models for students. She has mentored and empowered hundreds of faculty, students and postdocs.Dr. M. Claire Horner-Devine, University of Washington and Counterspace Consulting Dr. Claire Horner-Devine is the co-founder and co-director of three, federally funded, national programs (BRAINS, WEBS
-socioeconomic students as an often understudied population. Justin has served as the ASEE Student Division Co-Program Chair and is a current Director of Special Projects for the Educational Research & Methods Division.Dr. Allison Godwin, Purdue University, West Lafayette (College of Engineering) Allison Godwin, Ph.D. is an Assistant Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering foster or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical
arenot interested in having the same kinds of social experiences in college as first time freshmen[21]. These students were more interested in activities related to the goal of achieving thebaccalaureate degree, such as undergraduate research, academic clubs, or pre-professionalorganizations. In their study of student experiences at geographically-isolated campuses, Nuñezand Yoshimi [22] found that two years after transfer, students emphasized academic involvementover social involvement, and identified institutional agents, and academic and career goals asimportant. Participation in academically-oriented activities contributed to their socialengagement in the institution. Deil-Amen [23] found that for current community collegestudents, in-class
degree in Computer Science at Mississippi State Univer- sity, and her PhD in Computer Science at the University of Memphis. She brings software development and project management experience to the classroom from her career in industry. Her research interests include interdisciplinary project and team-based learning to promote gender equality in digital literacy and human and social aspects of software engineering.Tori Holifield, Mississippi State University Tori Holifield is an English graduate student at Mississippi State University pursuing an emphasis in Linguistics. She is a teaching assistant for the English department and a tutor for Academic Athletics. c American Society for
feedback about specific elements of the LLC program. Wehave found that our first two cohorts of female engineering students, currently in their secondand third years, express significantly higher levels of career expectations, self-efficacy, feelingsof inclusion and coping towards engineering than when they first entered. !IntroductionEngineering remains an academic area where women obtain a small fraction of bachelor degrees,and this trend does not seem to be changing in the near future. A recent report by the NationalStudent Clearinghouse found that although more students are pursuing S&E degrees, women’sshare of these majors has failed to increase over the last ten years.1 Researchers’ assumptions thatas women claimed more of the
faculty to use student-centered learning strategies and whether this varied by gender (Ross et al., 2016).Outside of these four categories, we found purposes that may not have directly aligned with thembut asked important diversity questions. For example, understanding why women leave theengineering workforce (VanAntwerp & Wilson, 2015), how to improve the experiences oftransfer students from community colleges into 4-year institutions (Pieri et al., 2015), andstrategies for dual-career couples searching for employment in academia (Ciston et al., 2015). 4.4. Publication DemographicsThe overwhelming majority of publications in our sample studied demographics via two maingroups: gender-based groups and racial and ethnic minorities. Other
development and career preparation, he received many of the highest honors in the National 4-H and National FFA Organizations. During his year of service as the Na- tional FFA Southern Region Vice President, Stephen was trained as a professional facilitator and keynote speaker while representing the National FFA Organization on his visits to more than 30 states and Japan. He is passionate about student development and connecting students with the resources and training they need to achieve their career and professional goals.Joseph Vincent Rispoli, Purdue University Joseph V. Rispoli graduated from Punahou School in Honolulu, Hawaii, in 1998, earned the BS degree in Electrical Engineering, BS degree in Computer Engineering
, fluid dynamics and bio-transport, with a focus on bio-fluid dynamics (vascular blood flow) and on front propagation both in biological tissue (avascular-tumor dynamics) and in reacting gaseous mixtures (flame propagation). He has developed computational algorithms and software for simulation and analysis of flame propagation, including an iPhone/iPad application (the Level-Set app). Dr. Aldredge received a BS degree in Mechanical Engineering and French at Carnegie-Mellon University and his Master’s and PhD degrees in Mechanical and Aerospace Engineering at Princeton University. He completed postdoctoral fellowships at UC San Diego and Caltech prior to arriving at UC Davis to begin his teaching career
-on practice and feedback showing greaterimprovements in training outcomes over hybrid, flipped and virtual course modalities.Furthermore, introduction of low, medium, and high level “challenges” along with in-persontutoring was found to be impactful in building a common foundation to span expertise levels andfor engaging students across entry and advanced levels. Training impacts peaked during yearfour with cumulative implementation of revised strategies. Innovative training revisions andinclusion of critical elements was strongly linked to program satisfaction and ratings of advancesin technical, professional and career skills as well as post-training carry over into trainees’ ownresearch and leadership in their labs and careers
. She completed her post-doctoral work at Columbia University between 2005-2008. She joined University of Missouri-Columbia, Chemical Engineering as an assistant professor in 2008 and has moved to Stevens in 2010. She is the recipient of the 2010 NSF-CAREER award and has received several grants from NSF-DMR, -CMMI and ACS PRF. She currently serves as the coordinator of the Nanotechnology Graduate Program and the PI of the REU/RET Site program (2021-2023) at Stevens. ©American Society for Engineering Education, 2023 A New Mentoring and Undergraduate Research Experience Model between REUs and RETs at the Stevens REU/RET Site Program on Sustainable Energy and BioengineeringAbstractThe Stevens REU/RET
changesappear during a period of over a year?Connected learning and supports for social capital in STEM Social capital is an important support for young people’s interest and persistence inSTEM fields so the lack of it is a key reason why youth from underrepresented groups do notpursue STEM interests and careers. Youth from underrepresented groups are much less likely tohave family, friends, and mentors involved in STEM fields and interests, and to encounter STEMrole models who share their cultural identity [5]–[7], despite the fact that they benefit morethan mainstream youth when they have positive mentoring relationships [8], [9]. RicardoStanton-Salazar’s research focuses on the unique barriers that immigrant youth face in gainingaccess to