Engineering and co-founder of the Integrative Learning Portfolio Lab in Career Education at Stanford University. She earned her undergraduate degree from UCLA and her PhD in Communication with a minor in Psychology from Stanford. Her scholarship is focused on engineering and entrepreneurship education, portfolio pedagogy, reflective practices, non-degree credentials, and reimagining how learners represent themselves through their professional online presence.Prof. George Toye Ph.D., P.E., is adjunct professor in Mechanical Engineering at Stanford University. While engaged in teaching project based engineering design thinking and innovations at the graduate level, he also contributes to research in engineering education
Paper ID #31340Health Stress and Support System Narratives of Engineering StudentsDr. Greg Rulifson PE, USAID Greg is currently a Science and Technology Policy Fellow at USAID. Greg earned his bachelor’s degree in Civil Engineering with a minor in Global Poverty and Practice from UC Berkeley where he acquired a passion for using engineering to facilitate developing communities’ capacity for success. He earned his master’s degree in Structural Engineering and Risk Analysis from Stanford University. His PhD work at CU Boulder focused on how student’s connections of social responsibility and engineering change
ofbusiness cycles. The views of the graduates have, by and large, been similar to thoseof the author and to views of some faculty members in Region’s colleges; and areconsonant with developing a more responsive educational environment.It is interesting to note that the evolution of engineering education in the Region haspassed through three consecutive stages. Stage one: the stage of founding andestablishment, lasted nearly a decade, and characterized mainly by adopting andtransferring a North American model of engineering education to the Region. Expats,at the time, were entrusted with the tasks of the transfer, and were guided primarilyby agreed-upon guidelines. Stage two: is the search for an identity stage. This is theperiod when nationals, who
well as the Past-Chair of the Continuing Professional Development Division of the American Society for Engineering Education. Dr. Springer received his Bachelor of Science in Computer Science from Purdue University, his MBA and Doctorate in Adult and Community Education with a Cognate in Executive Development from Ball State University. He is certified as a Project Management Professional (PMP), Senior Professional in Human Resources (SPHR & SHRM-SCP), in Alternate Dispute Resolution (ADR), and, in civil and domestic mediation. Dr. Springer is a State of Indiana Registered domestic mediator.Dr. Kathryne Newton, Purdue Polytechnic Institute Dr. Kathy Newton is an Associate Dean of Graduate Programs and Faculty
professional develop- ment seminars for local industry on topics including forecasting, inventory control, production planning, project management, transportation logistics, procurement, and supply chain management.Dr. John Pickard, East Carolina University Dr. Pickard is an Assistant Professor at East Carolina University in the College of Engineering and Tech- nology. He teaches undergraduate and graduate Information and Computer Technology (ICT) courses within the Department of Technology Systems. Dr. Pickard plays an active role in building positive and sustainable industry relationship between the college, local businesses, and industry partners. Current industry recognized certifications include; Cisco Certified
students’ motivation to persist in and learn about an engineering subject.Many studies have shown engineering identity as a predictor of students' educational andprofessional persistence. Thus, this theoretical framework’s inclusion allows the SPVEL to relatestudent learning profiles, formal and informal learning to their development and formation intoengineers. For example, it was found that there are significant gender differences in how first-yearstudents identify with engineering and becoming an engineer, where fewer women were exposedto the engineering field through applied or building experiences (0% women to 26% men);interactions with relatives who were engineers (20% women to 26% men) and STEM activities(10% women to 26% men) [94]. Thus
desire increased guidance on how their graduateprograms were structured and a greater understanding of how to develop and maintain functionalcommunication with their advisors. These findings will allow the engineering education researchand practice communities to understand better how students conceptualize graduate school andprovide adequate guidance and support. This study will contribute to the small body of literatureconcerning graduate engineering attrition and holds implications for the future of engineeringgraduate programs and departments in their ongoing efforts to promote their students' well-beingamid the growing crisis relating to student well-being.Introduction and Literature ReviewWhen observing the statistics for attrition from
biomedicine. He is a recipient of UCSB’s Center for Control, Dynamical Systems, and Computation Best PhD Thesis award and a UCI Chancellor’s Award for Excellence in Undergraduate Research Mentorship. ©American Society for Engineering Education, 2024 An Investigation of Psychological Safety in Student-Led Undergraduate Engineering Design Projects through Student InterviewsAbstractTo supplement classroom learning and prepare students to transition from school to industry,many undergraduate engineering students participate in team-based design projects, both indesign-focused courses and as extracurricular activities. These projects can be largely organizedand
, where she directs the Vir- ginia Tech Engineering Communications Center (VTECC). Her research focuses on communication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring communication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teaching practices in design education, the effects of differing design pedagogies on retention and motivation, the
that as sort of the engineering education person. That's been a great experience to work with a near peer colleague in a traditional engineering field and to introduce him, for example, to the ASEE community, to see him go off into the disciplinary side, the disciplinary division of ASEE to present papers over there that I don't have anything to do with.This sentiment was also reflected in many other interview participants who saw one of theirgoals, or a strategy toward creating change in engineering education more broadly, to becultivating awareness and building capacity among engineering faculty to enact lessons of socialresponsibility and embed ethics into “typical” engineering coursework. For the feminist
EMSLC student participation in club meetings and projects as well as their interestin leadership opportunities and compare engagement levels to non-EMSLC students. We willinvestigate RQ5 by analyzing the demographic breakdown of findings related to the other fourresearch questions.ConclusionThis work-in-progress paper describes early development of a new learning community we aredesigning to welcome and support precalculus-level students into their engineering academicpathway. The approach leverages multiple high-impact educational practices to promote deepconceptual learning, motivate foundational skill development, explore social relevance andconnection, and ultimately seeks to strengthen students’ engineering identity, sense of belonging,and
the USA,women represent only 19.7% of engineering graduates and 18.7% of computer sciencegraduates, lagging behind the 35.5% of women in all STEM fields [2]. The goal of this projectwas to understand student thinking about diversity and inclusion with the long-term aim ofimproving culture for females and under-represented groups. The engineering workforce andengineered products, infrastructure, and services can certainly benefit from designs created bydiverse teams. Prior researchers have linked diversity to increased creativity in teams andwork-groups [3, 4].Building an inclusive culture is challenging but very important. A negative campus climate canaffect students’ self-efficacy. A campus with a lack of diverse students can create a
School. He earned a B.S. in Materials Science Engineering from Alfred Univer- sity, and received his M.S. and Ph.D., both from Tufts University, in Chemistry and Engineering Education respectively. His research investigates the development of new classroom innovations, assessment tech- niques, and identifying new ways to empirically understand how engineering students and educators learn. He currently serves as the Graduate Program Chair for the Engineering Education Systems and Design Ph.D. program. He is also the immediate past chair of the Research in Engineering Education Network (REEN) and an associate editor for the Journal of Engineering Education (JEE). Prior to joining ASU he was a graduate student research
alsofeatured opportunities to develop a shared lexicon for ARDEI concepts and interrogate one's ownidentity and positionality.By making this a required course, we set the expectation that considering the societal impacts ofresearch is an important and natural part of the entire research process. We chose to expand anexisting professional development course for graduate students that originally solely coveredtopics like laboratory safety, library use, grant writing, and communication, to include ARDEIand social justice content. Into this predominately passive content, we added active and complexreflections and discussions of identity, bias, and (in)justice. We believe that developing thisreflective skill early sets students up to think about social
Paper ID #35572Navigating the academy in the absence of graduate disabilityaccommodation policiesD. C. Beardmore, University of Colorado Boulder Mx. Beardmore is currently a PhD student at the University of Colorado, Boulder. They study inclusive engineering education and construction engineering risk management. Their full bio and current and historical positionality statements can be found on their website at dcbeardmore.com American c Society for Engineering Education, 2022 Navigating the academy in the absence of graduate disability
Paper ID #21792Engaging Underrepresented Students in Engineering through Targeted andThematic Summer Camp Content (Work in Progress, Diversity)Amy L Warren, University of Arkansas College of Engineering Amy is the Assistant Director of Outreach and Summer Programs at the University of Arkansas College of Engineering. Prior to taking this position, she was the program coordinator for BGREEN (Building a Grass Roots Environmental Education Network) and a NSF GK-12 Graduate STEM Fellow at the Uni- versity of Missouri. She is currently completing her PhD in Biological Anthropology at the University of Missouri with a research
fourth and final task while also following suggestions made previouslyregarding the easing of financial burdens [16]. The Graduate Research Experience and Transitioning to Grad School (GREaT GradS)program was developed to borrow from undergraduate bridge programs and interventions whilemaintaining that one does not need to approach graduate students who have already beenadmitted under the premise of a deficit model, such as the Meyerhoff Scholars Program [23] -[25] or Alliances for Graduate Education and the Professoriate (AGEP) program [26], [27].GREaT GradS is a 6-week, graduate foundational program for incoming students in STEMdisciplines, including engineering, materials science, chemistry, and physics. GREaT GradS wasdesigned to
Director of Science Education at the University of Delaware’s Professional Development Center for Educators. In her role, Amy works collaboratively with K-12 sci- ence and engineering teachers to develop and implement standards-based curricula and assessments. She also provides mentoring and coaching and co-teaching support to K-12 teachers across the entire tra- jectory of the profession. Her research focuses on teacher education, classroom assessment, and P-16 environmental and engineering education.Prof. Andrew Novocin, University of DelawareDr. James Atlas, University of Delaware c American Society for Engineering Education, 2019 FLC E2T: A Faculty Learning Community on Effective (and
adult inform their research work.Dr. Kirsten A. Davis, Purdue University Kirsten Davis is an assistant professor in the School of Engineering Education at Purdue University. Her research explores the intentional design and assessment of global engineering programs, student development through experiential learning, and approaches for teaching and assessing systems thinking skills. Kirsten holds a B.S. in Engineering & Management from Clarkson University and an M.A.Ed. in Higher Education, M.S. in Systems Engineering, and Ph.D. in Engineering Education, all from Virginia Tech.Dr. Senay Purzer, Purdue University Senay Purzer is a Professor in the School of Engineering Education at Purdue University. Her research is
and 2019 have completed their engineering degreeprogram. We assessed their experiences through exit interviews and report in this paper asummary of their responses. The students noted that being able to identify themselves asbelonging to the RAMP community was a positive outcome of their participation during thesummer, an identity they appreciated throughout their engineering program. The potential forsummer bridge programs to create community and sense of belonging has been discussed insurveys of STEM summer bridge programs [8,9]. Characterized as a psychosocial goal of theprogram, improving student sense of belonging to a community has been found to influencestudent motivation, academic achievement, and well-being [8]. The Meyerhoff
makerspace has developed three mainstrategies for driving a diverse and larger set of students from its engineering, math, and physicalscience majors into the space to serve as a platform for design practice, cross-disciplinaryexploration, and community building. The first strategy aims to introduce the makerspace tostudents as early as possible, hopefully developing an early familiarity and connection to thespace. The second is the development of collaborative and structured learning opportunities thatencourages the teaching of broad skills and sharing of information within the makerspace,whether in the form of for-credit courses or short and accessible Microcourses. The third is toleverage web and social media to create excitement around student
. Kajfez and L. McNair, “Graduate student identity: A balancing act between roles,” in ASEE Annual Conference and Exposition, 2014.[4] D. L. Liddell, M. E. Wilson, K. Pasquesi, A. S. Hirschy, and K. M. Boyle, “Development of professional identity through socialization in graduate school,” J Stud Aff Res Pract, vol. 51, no. 1, pp. 69–84, Feb. 2014, doi: 10.1515/JSARP-2014-0006/MACHINEREADABLECITATION/RIS.[5] T. Luft and R. Roughly, “Engaging the Reflexive Self: The Role of Reflective Practice for Supporting Professional Identity Development in Graduate Students,” Supporting the Success of Adult and Online Students Proven Practices in Higher Education, pp. 53–62, 2016.[6] H. L. Perkins, M. Bahnson, M. A
Education Research & Development, vol. 38, no. 3, pp. 565-578, 2019.[4] G. M. Sallai, J. Vicente, K. Shanachilubwa, and C. Berdanier, “Coping landscapes: How graduate engineering students’ coping mechanisms correspond with dominant stressors in graduate school,” In American Society for Engineering Education 2022 Annual Conference, Minneapolis, MN, USA, June 26-29, 2022.[5] L. Osbeck, N. Nersessian, K. Malone, and W. Newstetter, Science as psychology: Sense-Making and identity in science practice. Cambridge, MA: Cambridge University Press, 2010.[6] B. A. Burt, “Toward a theory of engineering professorial intentions: The role of research group experiences,” American Educational Research Journal
, presentation, and business skills; and inspire their students, through examples of real-world applications, to pursue careers in STEM and create technology ventures.3. Assess program activities and disseminate outcomes.As elaborated below, PBL, engineering research, and entrepreneurship and industry experiencesare purposefully integrated in this PD program so that educators can link classroom teaching andlearning in STEM disciplines with real-world STEM practices.To develop a technically literate workforce, educators must not only teach STEM knowledge butalso address students’ question: “Why do I need to know this?” Engagement of industry in PD canallow teachers to inform students about job opportunities based on their own experiences. Such
critical design pedagogy, and the ways in which the pedagogy and underlying studio environment inform the development of de- sign thinking, particularly in relation to critique and professional identity formation. His work crosses multiple disciplines, including engineering education, instructional design and technology, design theory and education, and human-computer interaction.Dr. Marisa Exter, Purdue University, West Lafayette (College of Engineering) Marisa Exter is an Assistant Professor of Learning Design and Technology in the College of Education at Purdue University. Dr. Exter’s research aims to provide recommendations to improve or enhance university-level design and technology programs (such as Instructional
G.P. Berdanier is an Associate Professor of Mechanical Engineering at Pennsylvania State University. She earned her B.S. in Chemistry from The University of South Dakota, her M.S. in Aeronautical and Astronautical Engineering and her PhD in Engineering Education from Purdue University. Her research expertise lies in characterizing graduate-level attrition, persistence, and career trajectories; engineering writing and communication; and methodological development. ©American Society for Engineering Education, 2024Exploring the evolution of engineering doctoral students’ academic and career goals in the first year of graduate schoolABSTRACT The purpose of this
, geographically distributed, collaborative research projects among scholars, and with underserved communities. She is also a lecturer in the Mechanical Engineering department where she currently teaches a course Global Engineers’ Education.Ms. Sneha Ayyagari, Stanford University Sneha is a student studying engineering at Stanford University. She is interested in understanding the role of education in solving pressing health and environmental issues. Through her experience in non-profit work, she has developed an interest in learning how to work with underserved communities to create sustainable solutions.Mr. Jonathan Edward Pang, Stanford University I am an undergraduate studying mechanical engineering at Stanford University
better prepare developmental math community college students for transfer into STEM bachelor’s degree programs or entry into the STEM workforce.Cheryl Martinez, Growth Sector STEM Program ManagerIvanna Abreu ©American Society for Engineering Education, 2023 Paid Pre-College STEM Bridge Programs: “Just-In-Time” Support and Engagement for Community College STEM LearnersINTRODUCTIONWhile America’s “Innovation Economy” continues to thrive and drive strong employment trendsin technology, advanced manufacturing, R&D, and defense, our country’s postsecondaryinstitutions fail to produce enough qualified graduates to meet employer demand (O'rourke,2021). To further
helpengineers and their communities meet their needs, and clarifies that engineering does notinherently require technocratic solutions to communal problems and needs.PositionalityThe primary and secondary authors are both engineers, labor organizers with the AmericanFederation of Teachers (AFT) local GEO-3550, and children of union members fromworking-class backgrounds. Both were participants in the 2020 GEO-3550 abolitionist strike fora safe and just campus for all [29]. The first author was also taking graduate coursework inintroducing the concepts of engineering education research during the writing of this paper,which provided a critical reflective space for learning and grappling with theoretical frameworksand their applications. We reached out to
Development. He graduated from the University of Alabama in August 2012 with a PhD ©American Society for Engineering Education, 2024 Teaching Social Justice in Infrastructure: A Community of Practice Framework for the use of Case StudiesAbstractThe Center for Infrastructure Transformation and Education (CIT-E) was created in 2013 as acommunity of practice (CoP) for those interested in the scholarship of infrastructure educationand has developed a model introductory infrastructure course with over 40 lessons available toany instructor to use or modify. In the summer of 2023 CIT-E held a workshop “TeachingStudents about Equitable Infrastructure”. As a result of that workshop, one of the ongoing