Paper ID #7130Muddiest Point Formative Feedback in Core Materials Classes with YouTube,Blackboard, Class Warm-ups and Word CloudsProf. Stephen J Krause, Arizona State University Stephen J. Krause is a professor in the School of Materials in the Fulton School of Engineering at Arizona State University. He teaches in the areas of bridging engineering and education, capstone design, and introductory materials engineering. His research interests are evaluating conceptual knowledge, miscon- ceptions and their repair, and conceptual change. He has co-developed a Materials Concept Inventory for assessing conceptual knowledge
teaching position at the University of Florida. Dr. Bondehagen is a member of the American Geophysical Union (AGU), the American Water Resources Association (AWRA) and American Society of Engineering Education (ASEE). Her current research interests are in engineering education and contaminant transport/remediation.Dr. Yusuf A Mehta, Rowan University Dr. Mehta is an Associate Professor at the Department of Civil and Environmental Engineering at Rowan University. Dr. Mehta has extensive experience in teaching pavement materials and pavement systems. Dr. Mehta has published several technical and educational papers in leading professional organizations
Paper ID #5862A new motivation and perspective on teaching simulation and design: Thedevelopment of a dynamic process model in conjunction with an operatortraining simulator (OTS)Dr. Richard Turton P.E., West Virginia University Dr. Richard Turton, P.E., has taught the Senior Design course at West Virginia University for the past 27 years. Prior to this, he spent five years in the design and construction industry. His main interests are in design education and process modeling. Page 23.82.1
Paper ID #6766Efficient and Effective Instruction in Process Simulation Across the ChemicalEngineering CurriculumDr. Rebecca K. Toghiani, Mississippi State University Dr. Rebecca K. Toghiani is an associate professor of Chemical Engineering at MSU. She received her B.S., M.S., and Ph.D. all in Chemical Engineering from the University of Missouri-Columbia. She re- ceived the 1996 Dow Outstanding New Faculty Award and the 2005 Outstanding Teaching Award from the ASEE Southeastern Section. A John Grisham Master Teacher at MSU, she is an inaugural member of the Bagley College of Engineering Academy of Distinguished Teachers
concepts and data analysis very well. Overall, less than fiveout of ninety students could define soil liquefaction before the module. Afterwards, almost allstudents could describe causes and effects of liquefaction, but like in other teaching settings,students showed different levels of interest. Some answered questions without raising their handswhile others sat quietly and watched events unfold. In any case, it is advisable for the instructorto come up with different incentives to encourage equal student participation.During both lecture and laboratory sessions, visual aids were found to be effective in relayingnew concepts to students. YouTube videos were used and students seemed to relate tomultimedia form of presentations.Sustainability
their implementation into three collaborative courses, Introduction toNondestructive Evaluation and Structural Health Monitoring (NDE), Design for theEnvironment (DfE), and Green Buildings: Design and Construction (GB), that have beendesigned to enhance the learning of sustainability concepts. Pre- and post-assessment surveyswere administered to assess changes in student perceptions of sustainability concepts andapplications over a four-year period. Survey results present changes in perceptions ofsustainability concepts and applications over time as a result of the active and experientiallearning units and classes. The concurrent teaching of these sustainability units and classes atUPitt and ASU enhanced student collaboration within and across
Paper ID #7217Use of Studio-based Learning in a Material/Energy Balance ClassDr. Richard L. Zollars, Washington State University Dr. Richard Zollars is a professor in and associate director of the Gene and Linda Voiland School of Chemical Engineering and Bioengineering at Washington State University. He received his Ph.D. from the University of Colorado. He has been teaching engineering for 35 years. His interests are learning styles, colloidal/interfacial phenomena and reactor design.Dr. Christopher Hundhausen, Washington State University Dr. Chris Hundhausen received the B.A. degree in Math/Computer Science from Lawrence
Infrastructure Research Group (IRG). She also completed a teaching certificate and was actively involved with the Center for the En- hancement of Teaching and Learning (CETL) at Georgia Tech. Her academic interests focus on two primary areas of sustainable transportation: (1) community-based design and planning and (2) strategic planning and policy development. Dr. Barrella is also interested in investigating how to best integrate these research interests into classroom and project experiences for her students.Mr. Thomas A. Wall, Georgia Institute of TechnologyDr. Caroline R. Noyes, Georgia Institute of TechnologyDr. Michael O. Rodgers, Georgia Institute of Technology Dr. Michael Rodgers is a research professor in the Georgia
authors are grateful to Mr. Chad Seeley who is the Laboratory Associate at USM. Hisassistance in the manufacture of the experimental devices that were built in the course of thisresearch is greatly appreciated. 12. References 1. N. Randall and M.Ghorashi, “Design, Manufacture, Simulation and Experimentation of Several Tools to Assist in Teaching Strength of Materials and Statics Courses,” 119th ASEE Annual Conference, San Antonio, TX, June 10-13, 2012, Paper number: AC 2012-2971 (2012). 2. J.E.Corter, S.K.Esche, C.Chassapis, J.Ma and J.V.Nickerson, “Process and Learning Outcomes from Remotely-operated, Simulated, and Hands-on Student Laboratories,” Computers & Education, 57 (2011) 2054-2067. 3. A. Ayob
/Champaign under the direction of Prof. Nick Holonyak, Jr. Her areas of research include design of optoelectronic materials, devices, and systems; optical spectroscopy; high heat load packaging; and electrical engineering pedagogy.Mr. Justin Adam Cartwright, Virginia Tech Page 23.842.1 c American Society for Engineering Education, 2013 Lab-in-a-Box: Strategies to Teach Online Lab Courses While MaintainingCourse Learning Objectives and OutcomesThe Bradley Department of Electrical and Computer Engineering at Virginia Tech has institutedseveral nontraditional on-campus laboratory courses during the
Paper ID #7994Work In Progress: Adapting Inexpensive Game Technology to Teach Princi-ples of Neural Interface Technology and Device ControlDr. Benjamin R Campbell, Robert Morris University Dr. Campbell is an assistant professor of engineering at Robert Morris University, where he advises biomedical engineering students. Prior to that he worked as a laser engineer at the Penn State Electro- Optics Center, specializing in ultrashort pulse laser micromachining research. Dr. Campbell is also on the board of directors for the Pennsylvania Governor’s School for the Sciences Campaign, a nonprofit dedi- cated to providing free
that would allow them to experience some portions of teaching such as making up homework questions, grading homework and tests, supervising labs or tests, and conducting discussion hour. As a masters student, I was a TA for the unit operations laboratory for 3 semesters. This allowed me to supervise a group of undergraduate students in hands-on laboratory activities. I had the experience of grading thermodynamics homework from a different TA assignment. At this point I still did not feel like I could teach so I volunteered to guest lecture for professors in their absence. I got two opportunities to do so in lecture style classes. For my independent study, I also had the opportunity of teaching one week’s
midterm exams. As a result thestudents do not put a uniform effort in learning during the course but, under pressure from theirother courses, apply themselves to the EFW course for only a short period of time just before theexams, resulting in an uneven and incomplete learning.To overcome the problems described above we are developing a conceptually novel one-semester EFW course for engineering junior undergraduate students and establishing a newundergraduate EFW laboratory. This course is a four credit-hour lecture/lab course (three credithours are for the lecture component and one credit hour for the lab component of the combinedcourse). A novel style of teaching this EFW course is based on the interactive approach –experiment – theory
in a pair of looselyconnected undergraduate Aerospace Engineering courses that integrate teaching and research.The first one-third of each course is devoted to conventional lectures and/or laboratory exerciseswith computer interfaced data acquisition systems. The latter two-thirds focus on design andresearch projects in Aerospace Engineering with a few lectures interspersed. The teachingmethod has some unique characteristics: i) Undergraduates gain a research experience byworking in small groups of two or three students supervised by a volunteer graduate studentresearch mentor, ii) The particular research project is developed by the course instructors and thevolunteer graduate student research mentor in advance of the course as one related
General Mo- tors, and Xerox, and is a registered professional engineer in New York. He has thirty-five years experience teaching design related courses, and has developed expertise in the areas of robotics, and micro-robotics. He is currently working on the locomotion of micro-robots with micro-sensors and actuators, and on artificial muscles and sensors using electroactive polymers.Dr. Michael G. Schrlau, Rochester Institute of Technology (COE) Dr. Michael Schrlau is an assistant professor in the Department of Mechanical Engineering and the founding director of the Nano-Bio Interface Laboratory (NBIL) at the Rochester Institute of Technology. Dr. Schrlau is interested in several aspects critical to the
Paper ID #7863Just-in-Time-Teaching with Interactive Frequent Formative Feedback (JiT-TIFFF or JTF) for Cyber Learning in Core Materials CoursesProf. Stephen J Krause, Arizona State University Stephen J. Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of engineering education design, capstone design, and introductory materials engineering. His research interests include evaluating conceptual knowledge, misconceptions and their repair, and conceptual change. He has co-developed a Materials Concept In- ventory for assessing
Paper ID #7260Initial Development of the Engineering Genome Project–an Engineering On-tology with Multimedia Resources for Teaching and Learning EngineeringMechanicsDr. Edward J. Berger, University of Virginia Ed Berger is currently the Associate Dean for Undergraduate Programs in the School of Engineering and Applied Science at the University of Virginia. He is also Associate Professor in the Department of Mechanical and Aerospace Engineering. He teaches mostly sophomore mechanics courses. Page 23.753.1
Paper ID #5792Live Energy: An Initiative for Teaching Energy and Sustainability Topicswith the most Up-to-date and Relevant ContentDr. Christine Ehlig-Economides, Texas A&M University Dr. Ehlig-Economides has been full professor of petroleum engineering at Texas A&M University in the Albert B. Stevens endowed chair since 2004. Before that she worked for Schlumberger for 20 years in well test design and interpretation, integrated reservoir characterization, modern well construction design, and well stimulation. She has worked in more than 30 countries and authored more than 60 papers. Dr. Ehlig- Economides has
optimized chip layout with regard to performance, power, size, etc.This paper describes a sophomore-level electronic devices course that gives a balanced treatmentof semiconductor physics and associated circuit analysis. The course serves as a requirement inthe electrical engineering and computer engineering curricula at Missouri University of Scienceand Technology (formerly the University of Missouri-Rolla). It was developed in response toconcern about the number of lower-level coursework options for majors, development of thecomputer engineering program, comments from employers wanting more electronics instruction,and other pedagogical issues. The scope, objectives, design, assessment instruments, andassociated laboratory for the course are
. In 1997 he returned to academia, joining the engineering faculty of the University of St. Thomas and has taught courses in elec- tronics, digital system design, mathematics, physics, circuit theory, electromagnetics, statistical process control, computing, mechatronics, control theory, metrology and design.Dr. Marty Johnston, University of St. Thomas Marty Johnston received his B.S. from Walla Walla College and his M.S. and Ph.D. in physics from the University of California – Riverside. He is currently an Associate Professor of Physics at the University of St. Thomas in St. Paul, MN where he teaches a variety of physics courses. His research focuses on nonlinear dynamics. Working alongside undergraduate students
with student writing as a learning and assessment tool in her introductory physics courses for non-majors. She has been an active member of the American Society for Engineering Education (ASEE) and the American Association of Physics Teachers (AAPT) for over 25 years. Dr. Larkin served on the Board of Directors for ASEE from 1997-1999 as Chair of Professional Interest Council (PIC) III and as Vice President of PICs. Dr. Larkin has received numerous national and international awards including the ASEE Distinguished Edu- cator and Service Award from the Physics and Engineering Physics Division in 1998. Dr. Larkin received the Outstanding Teaching in the General Education Award from AU in 2000. In 2000 – 2001 she
Paper ID #8365A Direct Method for Teaching and Measuring Engineering Professional Skills:A Validity Study for the National Science Foundation’s Research in Evalua-tion of Engineering and Science Education (REESE)Dr. Ashley Ater Kranov, ABET, Inc. Ashley Ater Kranov, Ph.D., is ABET’s Managing Director of Professional Services. Her department is responsible for partnering with faculty and industry to conduct robust technical education research and providing educational opportunities on sustainable assessment processes for program continual improve- ment worldwide.Dr. Rochelle Letrice Williams, ABET Rochelle Williams
For the last lab, the analysis of the pre-test results (Fig. 15), revealed that, on average, 48 % of theanswers to the ten questions were correct. In contrast, the Post test results (Fig. 16) showed that, onaverage, students, answered 78 % of questions correctly. Students were satisfied with this new way of teaching. In fact, their feedback shows 82 %satisfaction. It should be noted that, a more detailed assessment study of the learning effectivenessof virtual physics lab is planned in spring 2013 semester. If this a l s o shows positive results,then further extensions of the virtual physics lab will be planned in the future. Conclusion This paper examined the potential of a game based virtual laboratory environment (both game
factor in the curriculum of the circuits courses taught to all engineers.While the power factor is simply the cosine of the phase angle between the voltage and current, ithas practical application for circuits containing reactive loads. Working scientists and engineersare concerned about the power factor in a broad variety of contexts ranging fromelectromechanical systems, e.g. motors, to impedance matching networks in audio and broadcastsystems. The power company cares about a user’s power factor and sets rates accordingly.We have developed a simple demonstration of an alternating current circuit using electric lampsas a proxy for resistive loads. The demonstration can be adapted to a laboratory experiment ineither a second semester general
Educaci´on del Noreste de M´exico (REDIIEN). Professor Dominguez has been a visiting researcher at Syracuse University and at the University of Texas at Austin. She teaches undergraduate courses in Mathematics and graduate courses in Education. Professor Dominguez is a thesis advisor on the master and doctoral programs on education of the Virtual University of Tecnologico de Monterrey. Her main research areas are: a) models and modeling, b) use of technology to improve learning and c) evaluation. In addition, Professor Dominguez is consultant for Texas Instruments (TI), she leads the group conTIgo T3 Latin America, and organizes and moderates webinars on the use of TI technology.Prof. Genaro Zavala, Tecnologico de
- Main Effect of Instruction, No Preconception-Instruction-InteractionIn this first example, students completed question sequences as required by a "flexible" homeworkassignment whereby they were required to participate in a physics education research experiment at somepoint during the academic term. These students were enrolled in an introductory, calculus-based physicscourse at large, public university, and completed the experiment in a physics education researchlaboratory by answering questions on laboratory computers.In particular, students were presented with questions in which they were asked to compare the time offlight of two projectiles. Specialized stimulus-delivery software was used to present these questions andrecord responses 6
Paper ID #6371Technology-Enabled Nurturing of Creativity and Innovation: A Specific Il-lustration from an Undergraduate Engineering Physics CourseProf. Frank V. Kowalski, Colorado School of Mines Prof. Frank Kowalski has been teaching physics at Colorado School of Mines since 1980.Susan E. Kowalski, Colorado School of MinesDr. Patrick B. Kohl, Department of Physics, Colorado School of MinesDr. Hsia-Po Vincent Kuo, Colorado School of Mines Page 23.1161.1 c American Society for Engineering Education, 2013
of instruction and stu- dent support. Prior to joining UW-Madison, Wayne directed the Midwest solid waste consulting services of Camp Dresser McKee and led energy conservation research projects for Argonne National Laboratory. He has a BS in engineering from Carnegie-Mellon University, an MS in civil engineering with an emphasis in regional planning from Northwestern University, and is a licensed professional engineer. For more information about UW-Madison’s online graduate engineering degree programs see http://distancedegrees.engr.wisc.edu Page 23.1224.1 c American
; the third site was aquadrangle on campus; the fourth site was near a food truck parked and in operation on campus;the fifth site was a car parking garage to simulate traffic inputs; and the sixth location was insideof a building on campus to evaluate indoor air quality.If field experiences are not practical, other forms of teaching field exercises could be evaluatedfor implementation into an existing laboratory or classroom curriculum. Virtual simulations offield labs can be used1,3,5,9,13. Ramasundaram et al.9 discuss the benefits and problems in usingan environmental virtual field laboratory developed by the authors. Virtual field experiences Proceedings of the 2013 American Society for Engineering Education Pacific Southwest
to provide training and guest lectures related to the use of the mobile laboratory technology and pedagogy to enhance the ECE curriculum at five different universities.Dr. Craig J. Scott, Morgan State UniversityDr. Jumoke Oluwakemi Ladeji-Osias, Morgan State University Dr. Jumoke Ladeji-Osias is Associate Professor and Associate Chair for Graduate Studies in the Depart- ment of Electrical and Computer Engineering at Morgan State University. She earned in B.S. in electrical engineering from the University of Maryland, College Park and a Ph.D. in biomedical engineering from Rutgers, The State University of New Jersey. She coordinates the departmental graduate program and teaches both undergraduate and graduate