Paper ID #17898An Evaluation of a Research Experience Traineeship (RET) Program for In-tegrating Nanotechnology into Pre-College CurriculumDr. Justin L Hess, Indiana University Purdue University, Indianapolis Dr. Justin L Hess is the Assistant Director of the STEM Education Innovation and Research Institute. In this role, Justin is working on improving the state of STEM education across IUPUI’s campus. Dr. Hess’s research interests include exploring empathy’s functional role within engineering and design; de- signing STEM ethics curricula; and evaluating students’ learning in the spaces of design, ethics, and
theseparticipants, 71% have presented their work at national professional society meetings, and two ofthem have become co-authors on three papers. Of the 17 who have since graduated, 13 are eitherin engineering graduate school or in STEM industry positions.REU students took part in an introductory bootcamp on the fundamentals of systems modelingand applied biostatistics and had multiple opportunities to present their research progressthroughout the summer to experts in the field. They also received professional developmenttraining through workshops and seminars on research ethics, technical communication, andlaunching careers in systems bioengineering. Post-REU surveys of participants revealed that100% of respondents rated their overall experience with the
broadly. A nationallyrepresentative study of engineering instructors and administrators showed that both programchairs and instructors reported their programs and courses gave only slight to moderate emphasison understanding how engineering solutions could be shaped by social, environmental, political,and cultural contexts or considerations, despite acknowledging the importance of such emphases[12]. Relatedly, in a longitudinal study of undergraduate engineering students, Cech [13], [14]found that students’ beliefs in the importance of professional and ethical responsibilities,awareness of the consequences of technology, understanding of how people use machines, andtheir social consciousness all declined over the course of their degree program
26.118.2Here the sustainable development of technology falls well within the umbrella of grandchallenges facing humanity. The Accreditation Board for Engineering and Technology (ABET)also requires engineering students to be exposed to sustainability in the context of technologydesign and development through student outcome (c): “an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.” 4The National Academy of Engineering echoes this emphasis on sustainability in engineeringprograms in its description of the Engineer of 2020, calling engineering students to: “… be leaders in the
-emphasizing social and economicpillars. Furthermore, most instruction on sustainability, as reported in the literature, appears tofocus on teaching the engineering student to be an engineer who practices sustainabledevelopment rather than a consumer who has a role in sustainable practice. In part, thisemphasis on the engineer's role in sustainability is a result of the Accreditation Board forEngineering and Technology (ABET)'s mandate that engineering undergraduates complete theirdegrees having achieved student outcome (c): “...an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability
includes a focus on student teamwork, a greaterconsideration of social factors, improved communication with diverse constituents, andreflection on ethical decision making and problem solving. This vision of engineering willproduce graduates who can address a wider range of societal problems bringing new perspectivesto traditional areas.Summary of Curriculum DevelopmentOne of the goals of our NSF RED grant is to: “Develop the foundation of a revised engineeringcanon and empower faculty to develop and deliver a professional spine that prepareschangemaking engineers.” Efforts to address this goal include creating new classes anddeveloping lectures, active-learning exercises and assignments that contextualize engineeringthrough social justice
: InstrumentDevelopment and Preliminary Psychometric Data”. Proceedings from the 125th American Societyfor Engineering Education Conference and Exposition, Paper #22372.[3] Zenios, S., Makower, J., & Yock, P. (2010) Biodesign: The process of innovating medicaltechnologies. Cambridge, UK: Cambridge University Press.[4] Cech, E.A. (2014). Culture of disengagement in engineering education? Science, Technology,& Human Values, 39(1): 42-72.[5] Bairaktarova, D., & Woodcock, A. (2017). Engineering student’s ethical awareness and behavior: a new motivational model. Science and Engineering Ethics, 23(4): 1129-1157.[6] Mamaril, N.A., Usher, E.L., Li, C.R, Economy, D.R., & Kennedy, M.S. (2016). Measuringundergraduate students’ engineering self-efficacy
photosyntheticmicroorganism that is ubiquitous and has been used by many civilizations for various uses. Theseuses range for aquaculture feed to food for humans. In recent years the use has been expanded forbiofuels, cosmetics, nutrient removal from wastewater and much more. The algae basedexperiments present engineering fundamentals and scientific principles, and providestudents/educators hands-on experience with engineering experiments and problem-solving. Theexperiments also include concepts from both the humanities and social sciences, such as ethics,gender and racial biases. A subset of the modules described in this paper were tested with first-year students in engineering through the use of surveys and participation in a focus group. Fromthe conducted surveys
Design Assessment-Revised; and the Critical Thinking Assessment Test). The evaluator also skims through the list ofother instruments and notes that there are writing assessments, design instruments, teamworkassessments, an ethical survey, and critical thinking tests, among several others. The evaluatordecides that, based on the information available, he needs to visit with the research team again tobetter delineate the professional skills the team would like to assess. After visiting with the team,the evaluator goes back to ASSESS and locates an instrument that best meets the team’s goalsand logistical capabilities for implementing the selected assessment. Scenario Three. An instrument developer is seeking ways to make information about
participants each year, spending approximately 40 hours per week onresearch and professional development activities. A smaller-scale follow-up program (fewerstudents) was also carried out in the summer of 2016. Faculty mentors paired with students,along with graduate student mentorship, to guide research projects in the area of biomedicaldevices, culminating in a research poster session at the end of the summer. Although many ofthe supplemental professional development activities focused on preparation for graduate study(GRE preparation, graduate school applications, professional skills, research ethics), seminarsand field trips designed to promote understanding of intellectual property, entrepreneurship, andindustry careers were also included as
Paper ID #22984Collaborative Research: vObjects - Understanding their Utility to EnhanceLearning of Abstract and Complex Engineering ConceptsDr. Diana Bairaktarova, Virginia Tech Diana Bairaktarova is an Assistant Professor in the Department of Engineering Education at Virginia Tech and the Director of the Abilities, Creativity and Ethics in Design [ACE(D)]Lab. Bairaktarova’s ongoing research interest spans from engineering to psychology to learning sciences, as she uncovers how individual performance and professional decisions are influenced by aptitudes and abilities, interest, and manipulation of physical and virtual
Junior 2nd Year 4 Environmental Health Sophomore 1st Year 5 Computer Engineering Junior 2nd Year 6 Computer Engineering Junior 2nd Year 7 Mathematics Junior 1st Year3.1 ExploreDuring the 2018 REU, the students engaged in a set of four structured learning activities designedto help them develop a number of technical and conceptual skills. In addition, they participated inregular workshops with topics including research and ethics, effective poster presentationpreparation, reflecting on the research experience, and graduate school application preparation.The students also participated in a
. The course topics thatwere not covered in ERSP at UIC due to time restrictions included: ethics in research, oralcommunication, peer-review (reduced time from 3 classes to 2 classes), and basic statistics andhypothesis testing. We also had to remove the following in-class exercises due to timerestrictions: final proposal presentation and reflections.One of the components that was critical to our adoption of ERSP, especially in ENG 294, waslogging because it helped us to identify team issues and determine proposal progress. Anothercritical aspect of the course was allocating time during class to check-in with each of the teams.Check-ins were done by the faculty and the graduate student.ConclusionOverall, the changes made to the ERSP model were
Paper ID #25639STEM Servingness at Hispanic Serving InstitutionsDr. Vignesh Subbian, The University of Arizona Vignesh Subbian is an Assistant Professor of Biomedical Engineering, Systems and Industrial Engineer- ing, member of the BIO5 Institute, and a Distinguished Fellow of the Center for University Education Scholarship at the University of Arizona. His professional areas of interest include medical informatics, healthcare systems engineering, and broadening participation in engineering and computing. Subbian’s educational research is focused on ethical decision-making and formation of identities in engineering.Dr
Appendix B.On the first day of class (for undergraduates) or before the first session (for high schoolstudents), this survey was distributed and collected by a sociology graduate student, so thatrespondents would not feel that their answers would prejudice the professor towards them oneway or another. After removing unique identifiers from the survey, the engineering professorsgraded them. Each professor was responsible for the same questions at Time 1 (before thecourse) and Time 2 (after the course) so as to maintain as much uniformity in grading aspossible. No grade was attached to the survey, as per ethical guidelines, but students were told to“do their best.”Research Questions:Thus, our research questions include: i) what is the knowledge
, and NCIIA. Dr. Sacre’s current research focuses on three distinct but highly correlated areas – innovative design and entrepreneurship, engineering modeling, and global competency in engineering. She is currently associate editor for the AEE Journal.Dr. Larry J. Shuman, University of Pittsburgh Larry J. Shuman is Senior Associate Dean for Academic Affairs and Distinguished Service Professor of industrial engineering at the Swanson School of Engineering, University of Pittsburgh. His research focuses on improving the engineering education experience with an emphasis on assessment of design and problem solving, and the study of the ethical behavior of engineers and engineering managers. A former Senior Editor of the
was new and cutting edge (nano-carbons parts made on a 3D printer that may later be used for electronics). It is nice to learn while being on the forefront of this research. In the lab we were given free range to create these dyes using the given knowledge. We were then encouraged to try new procedures that could result in new dyes. This was satisfying because it gave me a sense of autonomy but was scaffold in a way that made us want to keep trying new ideas.No recommendations were made for program modification in regards to this objective.Objective E: Understand the social relevance and ethical implications of engineering activitiesrelated to manufacturing (human rights, environmental impact, etc
, and NCIIA. Dr. Sacre’s current research focuses on three distinct but highly correlated areas – innovative design and entrepreneurship, engineering modeling, and global preparedness in engineering. She is currently associate editor for the AEE Journal.Dr. Larry J. Shuman, University of Pittsburgh Larry J. Shuman is Senior Associate Dean for Academic Affairs and Distinguished Service Professor of industrial engineering at the Swanson School of Engineering, University of Pittsburgh. His research focuses on improving the engineering education experience with an emphasis on assessment of design and problem solving, and the study of the ethical behavior of engineers and engineering managers. A former Senior Editor of
. Students expected to gain confidence, skills, and relationshipsthrough the program.All students expressed an interest in pursuing a career in STEM and hoped to use thisprogram as a way to help them refine what they wanted to do for graduate school.Students reported an increase in knowledge about ethical research conduct, graduateeducation at UNL, and how to apply for graduate school. Other skills students gained werecommunication skills and interdisciplinary work. Students felt most strongly they gained anability to complete research independently. They also felt mostly satisfied with mentorinteractions and the social events during the REU. 4
to learn. She also studies organizational learning in higher education systems.Michelle Kay Bothwell, Oregon State University Michelle Bothwell is a Professor of Bioengineering at Oregon State University. Her teaching and research bridge ethics, social justice and engineering with the aim of cultivating an inclusive and socially just engineering profession.Dr. Susannah C. Davis, Oregon State University Susannah C. Davis is a postdoctoral research associate in the School of Chemical, Biological and Envi- ronmental Engineering at Oregon State University. She received her Ph.D. and M.Ed. from the University of Washington, and her B.A. from Smith College. She is currently working on the NSF-funded REvolu
lead to the development of a degree program in AI. The project seeks toenhance Hispanic-Serving community college (HSCC) capacity to interest and train students inAI. This four-year project is a collaboration between a CC, a university, a non-profitorganization, industry partners, evaluators, and social scientists to understand how to expandHSCC computing pathways.2. Program Details The main objectives for the project include developing and implementing aninterdisciplinary AI certificate at the HSCC and, subsequently, creating courses that could beincorporated into a four-year degree at the HSCC. The interdisciplinary AI HSCC Certificate hasfour courses: AI Thinking, Applied AI in Business, AI & Ethics, and Machine
Transformational Resistance (Solórzano and Bernal,2001) • Classes that taught social justice theory Data Data which are identified by a student either: Barriers to students' resistance, such as: • Worrying about ethics in working in marginalized high degree of influence on career expectations (Bandura, 1997): Analysis
self-efficacy. As a result, elementary teachersmight then be better equipped to build students’ engineering identity and encourage them toconsider engineering as a potential career option.In addition to helping students develop engineering identities, exposure to engineering inelementary school is also beneficial for developing students’ engineering habits of mind(EHoM). EHoM are internalized dispositions and ways of thinking that engineers draw uponwhen confronted with problems [4] and include things such as optimism, persistence,collaboration, creativity, systems thinking, and attention to ethical considerations [5]. TheseEHoM can be beneficial to all students, regardless of career choice, but as with all habits,EHoM take time to develop. As
perspectives on actions they would take when performing poorly on an exam. Survey itemsincluded items on whether they would perform actions such as evaluating the reasons why itoccurred and strategizing next steps. These items slightly increased after completing the program(pre-M = 3.80, pre-SE = .184; post-M = 3.98, post-SE = .191).Research Skills and Knowledge: Overall, students’ understanding of research skills andknowledge such as proposal writing, presenting scientific work, research ethics, projectmanagement, usage of citations, data analysis, and problem solving increased (pre-M = 2.68,post-SE = .206; post-M = 3.88, post-SE = .236).Leadership and Teamwork Skills: Both before and after the program, students agreed thatoverall, they had
Virtual Annual Conference Content Access, Virtual On-line, 2020. [Online]. Available:10.18260/1-2—35561.[7] G. Townley, J. Katz, A. Wandersman, B. Skiles, M. J. Schillaci, B. E. Timmerman, and T. A.Mousseau, "Exploring the role of sense of community in the undergraduate transfer studentexperience," Journal of Community Psychology, vol. 41, pp. 277-290, 2013. [Online]. Available:https://doi.org/10.1002/jcop.21529.[8] B. Smith, Mentoring At-Risk Students through the Hidden Curriculum of Higher Education,Lanham, MD: Lexington Books, 2013.[9] M. Polmear, A. Bielefeldt, D. Knight, C. Swan, and N. Canney, "Hidden curriculumperspective on the importance of ethics and societal impacts in engineering education," ASEEVirtual Annual Conference Content
showcasing a cohesive theme across traditionally disparate undergraduate courses. Also, our team have endeavored to highlight critical topics such as ethics, sustainability, and resilience, all of which should increase the attractiveness of a CE engineering education to a broader spectrum of high- school students.This project is in progress and partial results are presented in this work-in-progress paper. Theproject aimed to evaluate the effectiveness of an educational video on multi-objectiveoptimization. Junior civil engineering students (n=38 students) at the second semester levelparticipated in this study, which involved a control group (n=24) and an experimental group(n=14). Participants were surveyed twice over a three
conclusions or recommendations expressedin this material are those of the authors and do not necessarily reflect the views of the NationalScience Foundation.References[1] Austin Cory Bart, Dennis G. Kafura, Clifford A. Shaffer, and Eli Tilevich. Reconciling the promise and pragmatics of enhancing computing pedagogy with data science. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education, SIGCSE 2018, Baltimore, MD, USA, February 21-24, 2018, pages 1029–1034, 2018.[2] Jeffrey S. Saltz, Neil I. Dewar, and Robert Heckman. Key concepts for a data science ethics curriculum. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education, SIGCSE 2018, Baltimore, MD, USA, February 21-24, 2018, pages
and Students. 2015 ASEE Annual Conference & Exposition, June 14-17, Seattle, WA.[10] Martin, T., Rayne, K., Kemp, N.J., Hart, J., & Diller, K.R. (2005). Teaching for Adaptive Expertise in Biomedical Engineering Ethics. Science and Engineering Ethics, Vol. 11(2), pp. 257-276.[11] McKenna, A. F., Colgate, J. E., Olson, G. B., & Carr, S. H. (2006). Exploring Adaptive Expertise as a Target for Engineering Design Education. In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. 963-968), ASME Digital Collection.[12] Martin, T., Baker Peacock, S., Ko, P., & Rudolph, J. J. (2015). Changes in Teachers’ Adaptive Expertise in an
Paper ID #38822Board 419: Students use their Lived Experiences to Justify their Beliefsabout How they Will Approach Process Safety JudgmentJeffrey Stransky, Rowan University Jeffrey Stransky is a PhD candidate in the Experiential Engineering Education (ExEEd) Department at Rowan University. His research interests involve studying engineering ethics and decision making and using digital games as safe teaching environments. He has published in the overlap of these topics by integrating digital games into chemical engineering curriculum to help students build an awareness of the ethical and practical implications of their
Paper ID #37086Board 299: Funds of Knowledge and Intersectional Experiences ofIdentity: Graduate Students’ Views of Their Undergraduate ExperiencesProf. Jessica Mary Smith, Colorado School of Mines Jessica M. Smith is Professor in the Engineering, Design and Society Department at the Colorado School of Mines. Her research and teaching bring anthropological perspectives to bear on questions of social responsibility and engineering. In 2016 the National Academy of Engineering recognized her Corporate Social Responsibility course as a national exemplar in teaching engineering ethics. Her book Extracting Accountability: Engineers