Comparative Analysis of Engineering Ethics TextbooksABSTRACT - Engineers play a critical role in bettering humanity via technological andscientific innovations. This ethical responsibility to the practice of engineering is the reason thatengineering ethics is required of all accredited engineering programs at all levels of education,and engineering ethics is required of all facets of professional licensure in engineering. Educatorsat all levels leverage textbooks to teach engineering ethics. In this paper, we conduct asystematic, comparative review of twenty-six of the most widely used engineering ethicstextbooks. This comparative analysis has enabled us to identify over forty thematic topics thatare collectively covered across these twenty
Paper ID #21239Developing a Summer Engineering Teaching Institute for Community Col-lege Engineering FacultyDr. Amelito G. Enriquez, Canada College Amelito Enriquez is a professor of Engineering and Mathematics at Ca˜nada College in Redwood City, CA. He received a BS in Geodetic Engineering from the University of the Philippines, his MS in Geode- tic Science from the Ohio State University, and his PhD in Mechanical Engineering from the University of California, Irvine. His research interests include technology-enhanced instruction and increasing the representation of female, minority and other underrepresented groups in
ItIntroductionThe world’s increasingly global economy has created a steadily growing market for engineerswho can work in a globalized environment (Jesiek & Beddoes, 2010). The need for suchengineers has increased even more rapidly in developing nations where population growthoutpaces technological solutions. To be competitive both at home and abroad, Americanengineers must learn how to interact productively with people from a range of cultures andcustoms (Ball, Zaugg, Davies, Tateishi, Parkingson, Gensen, & Magleby, 2012). Americaneducation must produce global engineers.Unfortunately, there is no standard definition of global engineer. A recent literature reviewreveals the extensive debate about this term. (See Jesiek, Zhu, Woo, Hompson, &
member to receive the national Campus Compact Thomas Ehrlich Faculty Award for Service-Learning. He was a co-recipient of the National Academy of Engineering’s Bernard Gordon Prize for Innovation in Engineering and Technology Education and the recipient of the National Society of Professional Engineers’ Educational Excellence Award and the ASEE Chester Carlson Award. He is a fellow of the American Society for Engineering Education and the National Society of Professional Engineers.Dr. Carla B. Zoltowski, Purdue University, West Lafayette Carla B. Zoltowski, Ph.D., is Co-Director of the EPICS Program at Purdue University. She received her B.S. and M.S. in electrical engineering and Ph.D. in engineering education, all
Paper ID #25549Iron Range Engineering - An Overview of Design and Open-Ended ProblemSolving Activities in an Interdisciplinary, Project-based Learning ProgramDr. Elizabeth Pluskwik, Minnesota State University, Mankato Elizabeth leads the Engineering Management and Statistics competencies at Iron Range Engineering, an ABET-accredited project-based engineering education program located in northern Minnesota. She enjoys helping student engineers develop entrepreneurial mindsets through active and collaborative learning in the classroom, on project design teams, and while out on co-op placement. Her prior education and industry
Paper ID #16006Industrial Networking through Academic CooperationMrs. Anna Sukhristina, Kazan National Research Technological University Anna Sukhristina graduated from Kazan State Technological University in 2007. Her major area of study was polymer chemistry and she graduated from the University with honors and obtained a qualification of Specialist in Engineering. During her University years she took additional training in English language and, in 2005, obtained the Diploma of Specialist in Technical Translation from Kazan State Technologi- cal University. Now Anna is a PhD student focusing in Theory of Education
science. She believes that the critical thinking skills acquired through STEM education are essential, and wants to inspire the next gen- eration to always query the unknown. Amy is passionate about connecting scientists and engineers with students who might not otherwise have the opportunity to connect one-on-one with STEM professionals.Ms. Tara Chklovski, Iridescent Ms. Chklovski is the Founder and CEO of Iridescent, a science, engineering and technology education nonprofit. Before starting Iridescent, she worked as the principal at a 300 student K-6 school in India. She has founded and grown Iridescent from a one-woman effort to an organization reaching 30,000 un- derserved students globally. With the help of a
Paper ID #43100Board 393: Supporting Hardware Engineering Career Choice in First-YearEngineering StudentsIng. Andrea Ramirez-Salgado, University of Florida Andrea is a doctoral candidate in Curriculum and Instruction at the University of Florida, specializing in Educational Technology. Her work centers on understanding the dynamics of teaching and learning approaches that shape the identity of computer engineers to support computer engineering career choices, particularly in women first-year engineering students. She is committed to designing inclusive curricula that cater to the needs of diverse learners, guided by
what theseexperiences are or should be, and we don’t know how to require them of all students.Approaches to the Integration of Engineering and Liberal ArtsTeaching Other Ways of Knowing: Fostering FamiliarityAccording to historian of technology Bruce Seely (1999), “[p]erhaps the most constantfeature of American engineering education has been the demand for change.” Thisdemand often grows from introspective reports such as that by Grinter (1955), or theNational Academy of Engineering’s Engineer of 2020 (NAE, 2004). Each call for reform“has sought to enlarge the core identity of the engineer from a technician skilled atcalculation and fabrication to a professional member of the wider culture” (Cohen,Rossmann, and Sanford Bernhardt, 2014). Indeed
particular, thearchetypal figure of Victor Frankenstein offers students a model of a negative “possible self” thatcautions against rogue engineering practices. The paper analyzes themes from Shelley’s novel asthey were used in courses in science, technology, and society (STS) to foster ethical reflection onthe perils of practicing irresponsible, presumptuous, unaccountable, and biased techno-science.IntroductionMary Shelley’s novel Frankenstein is widely regarded as a foundational work of early sciencefiction that cautions against misguided and unethical science and engineering. As such, the novelshould be poised to help engineering undergraduates cultivate moral imagination and acommitment to socially responsible techno-science. Along this line, a
Paper ID #20608Boosting engineering identity of rising sophomore engineering majors throughservice learning based bridge programDr. Deborah Won, California State University, Los Angeles Deborah Won is an Associate Professor in Electrical and Computer Engineering at California State Uni- versity, Los Angeles. Her specialization is in Biomedical Engineering and her scientific research area focuses on neuro-rehabilitative technology. Her educational research interests include use of Tablet PCs and technology to better engage students in the classroom as well as pedagogical and advisement ap- proaches to closing the
student publications (The Crank, SibleyJournal of Engineering, Cornell Engineer, Cornell Class Book) and staff publications (CornellWeekly Gazette, Library Annual Reports, Kaleidoscope, Cornell University Announcements, andCornell Alumni News), which will be referenced throughout the article. Cornell Engineering: ATradition of Leadership and Innovation is a book with a deep historical perspective on theCollege.1Literature ReviewA review of the literature reveals a number of books and articles on the development of scienceand technology libraries as they were created and some later consolidated. Mount2 edited avolume on a hundred year history (1887-1987) of science and technology libraries, with chapterson the development of separate sci-tech
Institute of Technology in 2000. Currently, she serves on the Editorial Board of the Springer Wireless Networks Journal and formerly on the editorial boards of IEEE Transactions on Mobile Computing and Elsevier Ad Hoc Networks Journal. Her engineering education research interests are the status of under- represented minority groups and women in engineering as well as the impact of online learning on student proficiency in engineering laboratory courses. Page 26.862.1 c American Society for Engineering Education, 2015 How the Pathway to Engineering Affects Diversity in the
labeled engineering or not, canserve a unique role for African American boys. These experiences may inspire them to pursueengineering degrees, can contribute to the students’ development of engineering skills,knowledge, behaviors. Furthermore, the experiences may positively impact their engineeringself-efficacy through their college years. Although all students may not continue into engineeringcareers these skills are transferable to many career and challenges. [1, 2] For those AfricanAmerican males, who complete STEM degrees, they will be our problems solvers who willaddress the technological challenges to come. While society is bombarded with propagandaaround the challenges and failures that African American male students experience
Paper ID #42277Advanced Four Pillars of Manufacturing KnowledgeDr. John L. Irwin, Michigan Technological University As Professor for Mechanical Engineering Technology at Michigan Technological University, Dr. Irwin teaches courses in Product Design & Development, Statics and Strength of Materials, Parametric Modeling, and Senior Design. Research interests include STEMMs. Suzy Gorospes Marzano, Sr Manager of Industry Development, SME Suzy Marzano is currently the Sr. Manager of Industry Development and Technical Activities at SME. Ms. Marzano joined SME in 2015 and has taken on numerous roles and responsibilities
culture are “artifacts” or feelable manifestations of culture that canprovide insight into deeper cultural characteristics that are more difficult to perceive, such asunderlying values and beliefs.This study is situated at a large, research-intensive institution, interviewing students involved inan engineering research center (ERC) focused on transformative energy technologies. ERCsoften have a direct or strong tie to industry and innovation [13]. ERCs are funded to researchcutting-edge or zeitgeist-related scientific and technological areas, patent and develop innovativediscoveries, promote, and sustain interdisciplinary work, and prepare a diverse engineeringworkforce [13]. Alongside providing space for communication and collaboration of
Paper ID #22535WIP: Exploration of Conceptions and Attitudes of Colombian and AmericanChemical Engineers about Chemical Engineering o˜Ing. Cristi´ n Eduardo Vargas Ord´ nez, Universidad de los Andes a Colombian chemical engineer with experience in industry, laboratories and educational programs. Cur- rently, I’m candidate of master in Sciencie, Technology and Society and studying a master in Education (STEM). My academical preferences are related with engineering education and education of socially responsible engineers.Dr. Mariana Tafur-Arciniegas, Universidad de los Andes Mariana
everyday life. Solutions to them willrequire interaction and collaboration between engineers and those from the broader liberal arts.Similarly, there is a need for those in other fields to have basic understanding of engineering.This need for a basic understanding is an outgrowth of the degree to which technology permeatesand shapes modern society. Without an understanding of how and why technology is developedand implemented, it becomes an almost magical black box. A lack of understanding of howsuch technology functions and is developed is antithetical to the enlightenment idea of educatingindividuals so they understand the world around them. An understanding of the world is thebasis on which the modern concepts of the liberal arts are based
Construction Engineering Technology at Penn State Harrisburg. She received her Ph.D., Masters, and Bachelors in Civil Engineering from the University of F ©American Society for Engineering Education, 2024 Artificial Intelligence Tools that Enhance Engineering Education Rajarajan Subramanian, Associate Teaching Professor and Sofia M. Vidalis, Associate Professor, Pennsylvania State University at HarrisburgAbstractPersonalized and electronic learning has been on the rise in recent years and is expected tocontinue growing. This approach to education has revolutionized the way engineering conceptsare taught by making it more immersive and interactive for students. In engineering
Paper ID #15250Pilot Programs for Veterans Transition to Engineering FieldsDr. Vukica M. Jovanovic, Old Dominion University Dr. Jovanovic received her dipl.ing and M.Sc. in Industrial Engineering - Robotics, Mechatronics and Automation from University of Novi Sad, Serbia. She received a PhD in Mechanical Engineering Tech- nology at Purdue University, while working as a PhD student in Center for Advanced Manufacturing, Product Lifecycle Management Center of Excellence. Dr. Jovanovic is currently serving as Assistant Professor of Engineering Technology, Frank Batten College of Engineering and Technology at ODU. She is
verification engineer from 1983 to 2014. Since then I have been working to transition from engineering back to being a student. I am currently pursuing studies in anthropology.Francesca Dupuy, University of Florida c American Society for Engineering Education, 2017 WIP: Racialized Experiences of Black EngineersAbstractThis Work in Progress paper examines the experiences of Black engineers working in thetechnology industry. Although technology companies are publically supporting increaseddiversity among their employees, simply hiring more underrepresented minorities doesnot ensure an inclusive workplace. Our study examines the question, how do Blackengineers navigate issues of power and privilege
Paper ID #37858Engagement in Practice: Promoting Environmental Health Literacy to RaiseAwareness of Antibiotic ResistanceDr. Daniel B. Oerther, Missouri University of Science and Technology Professor Daniel B. Oerther, PhD, PE joined the faculty of the Missouri University of Science and Tech- nology in 2010 as the John A. and Susan Mathes Chair of Civil Engineering after serving ten years on the faculty of the University of Cincinnati where he served as head of the Department of Civil and Environ- mental Engineering. ©American Society for Engineering Education, 2023 Engagement in Practice: Promoting
National Leadership Advisory Board of the StriveTogether Network during its affiliation with the KnowledgeWorks Foundation (Cincinnati). He is currently a Senior Fel- low of the American Leadership Forum (Houston/Gulf Coast Chapter) and is serving on the Executive Committee of its Board of Trustees.Dr. Jean S Larson, Arizona State University Jean Larson, Ph.D., is the Educational Director for the NSF-funded Engineering Research Center for Bio- mediated and Bio-inspired Geotechnics (CBBG), and Assistant Research Professor in both the School of Sustainable Engineering and the Built Environment and the Division of Educational Leadership and Innovation at Arizona State University. She has a Ph.D. in Educational Technology
Paper ID #42901The ICE Faculty Development Program (Integrating Curriculum with EntrepreneurialMindset) – Then and NowDr. Andrew L Gerhart, Lawrence Technological University Andrew Gerhart, Ph.D. is a Professor of Mechanical Engineering at Lawrence Technological University. He is a Fellow of the Engineering Society of Detroit and is actively involved in ASEE and the American Society of Mechanical Engineers. He serves as Faculty Advisor for the American Institute of Aeronautics and Astronautics Student Chapter at LTU, director of IDEAS (Interdisciplinary Design and Entrepreneurial Applications Sequence), chair of the First
, including the Accreditation Board for Engineering and Technology (ABET), theNational Academy of Engineering (NAE), and the National Science Foundation (NSF), all agreethat social responsibility is a vital component of an engineer's professional formation.[7]–[9]. They emphasize that social responsibility must be a guiding and transformativeexperience in the education of engineers. Social responsibility refers to an activity or actionwithin science and technology that is socially responsible if it satisfies certain ethical principles,and socially irresponsible if it does not satisfy those principles [10].” In a sense, socialresponsibility goes beyond the ethical obligation engineers have to society and the environmentby including agency towards
. Besser, a licensed engineer, was a design engineer with HNTB-CA, where she worked on seismic retrofits and new design of high profile transportation structures.Ms. Alison Haugh, University of St. Thomas Alison Haugh is a recent graduate from the University of St.Thomas with degrees in Elementary Edu- cation, STEM Education, and a focus in Engineering Education. Her undergraduate research with the Playful Learning Lab focused on expanding quality engineering education with an eye to under-served populations, including students with disabilities, emphasizing learning through play. Alison was the Lead STEPS (Science, Technology, and Engineering Preview program) curriculum constructor and continues to be an off-site
conceptinventories and to understand what sociocultural norms and lived experiences are represented inthose contexts, which have implications for fairness. The overarching research question is: Whatsociocultural norms and lived experiences are dominant in the context of concept inventoryquestions?Literature ReviewConcept Inventories Science, technology, engineering, and mathematics (STEM) educators and educationalresearchers commonly use concept inventories (CIs) to assess students’ conceptualunderstanding of foundational topics by asking students about the topics in everyday, out of theclassroom contexts [2], [5]. Globally CIs are used to assess students’ conceptual understandingof specific subject areas and study the effectiveness of curriculum
technological and non-technological methods to enhance the learning processes of undergraduate engineering students. He is currently leading a second research project related to use of mobile learning technologies in undergraduate engineering education. This research explores available empirical evidence about the role mobile learning technologies may play in improving student accessibility to knowledge, academic engagement and motivation, and self-regulation.Dr. Sheryl A. Sorby, University of Cincinnati Dr. Sheryl Sorby is currently a Professor of STEM Education at the University of Cincinnati and was recently a Fulbright Scholar at the Dublin Institute of Technology in Dublin, Ireland. She is a professor emerita of
Paper ID #30513Students in Engineering Design Process and Applied ResearchDr. Kuldeep S Rawat, Elizabeth City State University KULDEEP S. RAWAT is currently the Dean of Science, Aviation, Health and Technology and Director of Aviation Science program at Elizabeth City State University (ECSU).He has earned an M.S. in Com- puter Science, 2001, an M.S. in Computer Engineering, 2003; and, a Ph.D. in Computer Engineering, 2005, from the Center for Advanced Computer Studies (CACS) at University of Louisiana-Lafayette. He serves as the Site Director for NASA MUREP Aerospace Academy program at ECSU. His areas of in- terests
. Kristin Kelly Frady, Clemson University Kris Frady is an Assistant Professor in the Departments of Educational and Organizational Leadership and Development and Engineering and Science Education at Clemson University and Faculty Director for Clemson University Center for Workforce Development (CUCWD) and the National Science Foundation Advanced Technological Education Center for Aviation and Automotive Technological Education using Virtual E-Schools (CA2VES). Her research and experiences include implementation of digital learning solutions, development of career pathways including educator professional development, and analysis of economic development factors impacting education and workforce development.Dr. Patrick