persistence and retention of low-income engineering transfer students.Dr. David A. Copp, University of California, Irvine David A. Copp received the B.S. degree in mechanical engineering from the University of Arizona and the M.S. and Ph.D. degrees in mechanical engineering from the University of California, Santa Barbara. He is currently an Assistant Professor of Teaching at the University of California, Irvine in the Department of Mechanical and Aerospace Engineering. Prior to joining UCI, he was a Senior Member of the Technical Staff at Sandia National Laboratories and an adjunct faculty member in Electrical and Computer Engi- neering at the University of New Mexico. His broad research interests include engineering
phenomenological study [10] was to describe the lived experiences ofinternational engineering graduate students who had to switch to a new research group tocomplete their studies in the US. In this study, the lived experiences of the graduate students wasdefined as the meaning students attributed to their experiences and the description of theirphysical, emotional, and psychological states as they navigated the new research laboratory andadapted to its work ethics and cultural and social norms.Positionality Researchers undertaking phenomenological studies must identify and articulate theirpositionalities [11]. Declaring our positionalities will help us set aside our experiences and focuson the research topic and process [12],[13]. The first author
, Dr. Reustle’s research focuses on community-level consequences for shifts in species-interactions due to (1) climate change and environmental perturbations (i.e., drought/flood, high intensity storm-events), (2) changes in predator/parasite field (i.e., reason for and consequences of changes in abundance of predator(s) and parasites), and (3) changes in sensory regime and behavior (i.e., changes in the visual or chemosensory profile; altered fear response to predators and/or parasites). Dr. Reustle’s research intersects with and has expanded into habitat restoration and assessment where Dr. Reustle is interested in restoring habitat and ecosystem services. Dr. Reustle incorporates field and laboratory studies at
? Investigating relationships between teaching assistants and student outcomes in undergraduate science laboratory classes,” J. Res. Sci. Teach., vol. 54, no. 4, pp. 463–492, Apr. 2017, doi: https://doi.org/10.1002/tea.21373.[4] C. Kepple and K. Coble, “Investigating potential influences of graduate teaching assistants on students’ sense of belonging in introductory physics labs,” PERC Proc., pp. 282–287, 2019.[5] S. M. Love Stowell et al., “Transforming Graduate Training in STEM Education,” Bull. Ecol. Soc. Am., vol. 96, no. 2, pp. 317–323, Apr. 2015, doi: https://doi.org/10.1890/0012-9623-96.2.317.[6] N. M. Trautmann and M. E. Krasny, “Integrating Teaching and Research: A New Model for Graduate Education
Student Assistant Professor Programs Rayen School of Engineering, College of Engineering, Virginia Tech Youngstown State University Kingsley Nwosu, MEng Mandy J. Wright, MA, MSEd Data Platform Engineer Co-Director | Content Strategy Oak Ridge National Laboratory Fields Wright Communication Consulting3Individual introductions of those present and their roles. 3 Goals and Objectives of CEED and A Step to the Doctorate ProgramA Step to the Doctorate is programming offered by the Center for
completely through online tools such as email, text messaging, and Zoommeetings. This model requires minimal funding and eliminates geographical barriers, allowing studentsthroughout the United States to participate in undergraduate research opportunities without a need torelocate.In the 2020-21 academic year, this innovative research opportunity focused on creating distanceeducation STEM modules on statistical analysis and graphing, two pivotal skills needed for success inengineering and science courses that are often neglected in STEM laboratory curricula at this level.Remote research, coupled with outreach and mentoring of high school students, has never before beenconducted by community college students on the national scale and is a step
mentors.In fall 2020, the undergraduate research project goals were to lay the foundations of researchmethodologies, technical documentation, sociological perspective, computer programming, andengineering research using digital cameras. The Engineering Scholars participated in a variety ofvirtual seminar settings including discussion, lecture, and hands-on laboratories. Spring 2021seminars build upon fall 2020 to include issues faced by our local communities. Students areguided to see how scientists and engineers view and approach these problems through theapplication of Remote Sensing methodologies. The primary focus is on the analysis of localissues such as natural disasters (wildfires, floods, earthquakes, etc.) and pollution throughsharing
in-person laboratory experiences. The course used the video conferencing clientZoom as the primary method of communication. If virtual and in-person learning was happeningsynchronously, the Zoom call was projected in the classroom so that all students could see andhear each other. A video and audio feed was also available from the classroom so that studentscould hear each other across platforms.ResultsThe results of both Cohort A and Cohort B’s activities were extremely promising. Students inCohort A had statistically significant improvements in the number of other students they feltcomfortable working with over the course of the semester. At the start of the semester, studentsidentified in the survey that they were willing to work with an
reflexivity... whether,and to what extent, we [are] ready to reflect on the subject matter of race and racism in thismostly color-blind field of inquiry.” [7] What we observed during the ASEE virtual conferencewere contributions to “Big STS”—a concept introduced by Gary Downey to identify approachesto science and technology studies (STS) that promise broader social impacts beyond themicrosociology of laboratory studies, which have long been privileged in the field.On the surface, this paper is about activisms, social movements, and racial justice in engineeringeducation, but there is an understory about how small and subtle actions, like opening a SlackChannel for crafting, afford alternative virtual maker spaces for different possible futures. Howdo
systems.acknowledgementThis work has been funded by the Global Laboratory for Energy Asset Management andManufacturing (GLEAMM) and Texas Instruments.references[1] A. Ramsetty and C. Adams, "Impact of the digital divide in the age of COVID-19," Journal of the American Medical Informatics Association, vol. 27, no. 7, pp. 1147-1148, 2020.[2] H. Greenhalgh-Spencer and M. Jerbi, "Technography and design–actuality gap-analysis of internet computer technologies-assisted education: Western expectations and global education," Policy Futures in Education, vol. 15, no. 3, pp. 275-294, 2017.[3] A. Banerjee, P. Glewwe, S. Powers, and M. Wasserman, Expanding access and increasing student learning in post-primary education in
Paper ID #34035Team Formation and Function Decisions and Student Roles on DiverseEngineering Design TeamsDr. David A. Copp, University of California, Irvine David A. Copp received the B.S. degree in mechanical engineering from the University of Arizona and the M.S. and Ph.D. degrees in mechanical engineering from the University of California, Santa Barbara. He is currently an Assistant Professor of Teaching at the University of California, Irvine in the Department of Mechanical and Aerospace Engineering. Prior to joining UCI, he was a Senior Member of the Technical Staff at Sandia National Laboratories and an adjunct
. Ethnographic research was alogical fit for our study, which aimed to examine the cultural tension and confluence in femalestudents’ experiences situated in a traditionally male-dominated learning environment.Data Sources After IRB approval, the research team contacted the instructor of the course entitledMilitary Technology and Instrumentation (MTI) or Experimental Research Methods (ERM) toobtain his support for data collection. MTI/ERM was a new course developed through externalgrant support with a goal to broaden the military science and technology workforce. The courseincluded lectures and several hands-on laboratory activities designed to increase students’interest in and knowledge of military technologies and related career opportunities
Paper ID #33821Global Engineering Competencies Learned Through Virtual Exchange ProjectCollaborationDr. Deborah Walter, Rose-Hulman Institute of Technology Dr. Deborah Walter is an Associate Professor of Electrical and Computer Engineering at Rose-Hulman Institute of Technology. Her areas of expertise include design, and medical imaging. She started college at the University of Maryland (UMD) in College Park. After receiving her PhD at the Pennsylvania State University, she went to work for GE at the Global Research Center. She was in the Computed Tomography laboratory where she helped to design new x-ray CT systems for
University in Flint, Michigan. There, he also served as the program director for Entrepreneurship Across the University. Prior, Doug was the Director of Research & Development for Digisonix Incorporated. His disciplinary specializations include signal processing, acoustics, and wireless communications.Dr. Heather Dillon, University of Washington Tacoma Dr. Heather Dillon is Professor and Chair of Mechanical Engineering at the University of Washington Tacoma. Her research team is working on energy efficiency, renewable energy, fundamental heat transfer, and engineering education. Before joining academia, Heather Dillon worked for the Pacific Northwest National Laboratory (PNNL) as a senior research engineer.Dr. Mark L
ofplywood to the back of the original handle. After the wood glue dried up, they applied the firstcoat of white spray paint on the LAB.Students had already 3D-printed educational shapes that are used for the shape drop activities.There is a blue cube, red cylinder, and a yellow triangular prism as shown in Figure 9a. They allhave the same dimensions of 1.5” W, 1.5” L, and 1.5” H. The right dimensions of the shapes arevery important because they need to fit in the slots in the board, as well as making sure they werebig enough for the children to handle safely. It took about an hour and a half for each shape tobe completed in the Engineering Technology laboratories as seen in Figure 9b. (a
, preliminaryanalysis highlights three emergent themes: ● Perhaps most obviously, participants felt prepared when they encountered a task that exactly matched prior work. Often this kind of preparedness centered on a specific tool (e.g. knowing how to use a particular CAD program or piece of laboratory equipment), and was most closely related to demonstrated competence. ● Participants also perceived themselves prepared when they encountered situations that were “familiar” or “similar” to their prior experiences. For example, they felt prepared to talk with a vendor at work if they had talked with a vendor during their capstone project. ● Finally, participants perceived themselves prepared when they had a strategy for
where she currently teaches Unit Operations Laboratory, Capstone Design, and Conservation Principles. She also developed and has run, for 8 years, a month long faculty led international summer program to Brazil which focuses on Sustainable Energy Technologies. American c Society for Engineering Education, 2021 Lessons Learned Developing and Running a Virtual, Faculty-Led, International Program on Sustainable Energy in BrazilGlobalization in engineering education has become increasingly important, especially whendiscussing innovating sustainable designs and technologies to help relieve the climate crisis [1].However, in 2020 the COVID-19 pandemic has
Engineering and Expeditionary Warfare Center (EXWC) in Port Hueneme, California. The EE&C Division at EXWC seve as subject matter experts for the design and analysis of DoD facilities against blast and impact gener- ated by accidental explosions. Dr. Oesterle has been involved with many blast and impact experimental projects, including confined blast testing of hardened structures for the DoD. He has also conducted sev- eral research studies using advanced finite element models to analyze and design hardened facilities for the DoD Explosives Safety Board, Air Force Research Laboratories, and NAVFAC. Dr. Oesterle is also the technical lead for the layered hardening effort under the Hardened Installation Protection for
-level mathematics,including numerous semesters of calculus and theoretical science courses [7].Engineering technology programs focus on the application of traditional engineering theory. Thedegree course work focuses on applied calculus, algebra, and trigonometry [7]. This area ofstudy includes practical, laboratory, and problem-solving skills, giving engineering technologydegree programs an “implementation” minded focus of engineering theory [5].Figure 1 depicts the hands-on-continuum of engineering technology [8]. Engineering programsstudy coursework geared towards science, theory, and foundational analysis, while engineeringtechnology programs study coursework geared towards industrial application and hands-onimplementation in the workplace
knowledge(for example, is it assumed that they know how a car engine works?) • Level 1. At commencement of the course, students are expected to have some degree of knowledge which is not formally taught in prerequisite courses, e.g. previous experience with electrical or mechanical components. • Level 2. Between 1 and 3 • Level 3. Curriculum content assumes no knowledge outside prerequisite curriculum • Level 4. Between 3 and 5 • Level 5. All required content is included in the curriculum and is structured to build on informal experiences that will be familiar to a diverse range of students (e.g. household items and technology)Q48. Is prior knowledge of laboratories and equipment use assumed in your
enhance student learning in a senior feedback controls lecturecourse," ASEE Annual Conference, Atlanta, GA.[5] Parker, J. M., Canfield, S. L., and Ghafoor, S. K., 2014, "Using hardware-basedprogramming experiences to enhance student learning in a junior-level systems modelingcourse," ASEE Annual Conference, Indianapolis, IN.[6] Candelas, F., Garcia, G. J., Puente, S., Pomares, J., Jara, C. A., Pérez, J., Mira, D., andTorres, F., 2015, "Experiences on using Arduino for laboratory experiments of automatic controland robotics," IFAC-PapersOnLine, 48(29), pp. 105-110.[7] Reguera, P., García, D., Domínguez, M., Prada, M., and Alonso, S., 2015, "A low-cost opensource hardware in control education. Case study: Arduino-feedback MS-150,"IFACPapersOnLine
engineering education.Dr. Bruk T. Berhane, Florida International University Dr. Bruk T. Berhane received his bachelor’s degree in electrical engineering from the University of Mary- land in 2003. He then completed a master’s degree in engineering management at George Washington University in 2007. In 2016, he earned a Ph.D. in the Minority and Urban Education Unit of the Col- lege of Education at the University of Maryland. Bruk worked at the Johns Hopkins University Applied Physics Laboratory, where he focused on nanotechnology, from 2003 to 2005. In 2005 he left JHU/APL for a fellowship with the National Academies where he conducted research on methods of increasing the number of women in engineering. After a brief stint
Purdue, Dr. LaRose serves as a teacher educator,preparing future agricultural educators to meet the needs of a diverse array of learners in their classes. Sheteaches coursework in curriculum design, laboratory teaching practices, and teaching methods in agricul-tural education. Central to all of Dr. LaRose’s work as an educator and a scholar is an effort to addressinequities in agricultural education curriculum, program design, and recruitment practices. American c Society for Engineering Education, 2021Using Broad Spectrum Technological Projects to Introduce Diverse Student Populations to Biological & Agricultural Engineering (BAE): A Work in ProgressAbstractThis paper is a
. from Michigan State University in 1999. His current teaching and research interests include design, characterization, and rapid prototyping of information processing systems, embedded cyber-physical systems, and engineering education. He is the lead author of the textbook Introduction to Embedded Systems: Using Microcon- trollers and the MSP430 (Springer 2014). From 2013 to 2018 served as Associate Dean of engineering at UPRM. He currently directs the Engineering PEARLS program at UPRM, a College-wide NSF funded initiative, and coordinates the Rapid Systems Prototyping and the Electronic Testing and Characterization Laboratories at UPRM. He is a member of ASEE and IEEE.Dr. Nayda G. Santiago, University of Puerto
team.Dr. Andrew L. Gerhart, Lawrence Technological University Andrew Gerhart, Ph.D. is a Professor of Mechanical Engineering at Lawrence Technological University. He is actively involved in ASEE and the American Society of Mechanical Engineers, and a fellow of the Engineering Society of Detroit. He serves as Faculty Advisor for the American Institute of Aeronautics and Astronautics Student Chapter at LTU, director of the Interdisciplinary Design and Entrepreneurial Applications curriculum , a KEEN Leader, supervisor of the LTU Thermo-Fluids and Aerodynamics Laboratories, coordinator of the Certificate/Minor in Aeronautical Engineering, and faculty advisor of the LTU SAE Aero Design Team. Dr. Gerhart conducts workshops
depart- ments, science and technology companies, community organizations, and donors. At MOXI, Skinner’s current role in education research focuses on training informal STEM facilitators and engaging visitors in the practices of science and engineering. He is the principal investigator on two collaborative NSF grants and one sub-award with UC Santa Barbara, where he is also pursuing doctoral work in education research. Skinner’s science research experience includes marine science fieldwork along the Northern California coast; plasma physics research at the University of California, Irvine; and nanotechnology research at Sandia National Laboratory. He gained practical engineering experience as a patent reviewer for
Credentials for 21st- Century Emerging Tech Careers,” In Proceedings of Society for Information Technology & Teacher Education International Conference, 2020, Waynesville, NC, USA. https://www.learntechlib.org/p/215853/.[5] National Institute of Standards and Technology. Cloud Computing. Information Technology Laboratory. June 2020. https://csrc.nist.gov/projects/cloud-computing.[6] M. Hendon and L. Powel. “Activity based learning for cloud computing,” Journal of Computing Sciences in Colleges, 2020, vol. 35, no. 8, pp. 176-185.[7] D. Foster, L. White, J. Adams, D. C. Erdil, H. Hyman, S. Kurkovsky, M. Sakr, M. and L. Stott. “Cloud computing: developing contemporary computer science curriculum for a cloud-first future
information to help international students and faculty navigate the difficult time. 2. Addressing logistics: Around half of the universities used the web pages to address logistics related information. These included resources for faculty and students alike on which buildings were still open, recommendations for use of laboratory spaces, booking of meeting rooms and conference rooms and guidelines for gathering indoors. 3. Promoting wellness - both physical and mental: Around a third of the universities used the web pages to promote wellness, both physical and mental. Some universities provided links to indoor exercises, while others promoted mindfulness and encouraged mental wellbeing. 4. Showcasing
transition.And some were learned during the implementation of the hybrid model.PartnershipsThe value of campus-community partnerships has been well documented as an important supportin STEM outreach programs [1], [2], [3]. The partnerships formed among Angelo State University(ASU), Tom Green County Library (TGCL), and area community-based organizations provided awealth of resources which were essential to the program’s success. ASU and TGCL provided thecornerstone partnership needed to establish and build the program. While both institutions sharegoals of acquiring and disseminating knowledge, they have very different characters. Angelo Stateprovides technical expertise within STEM fields and extensive laboratories. However, many of itsresources are
. This percentage for engineering courses was mere 0.86%. This is unfortunate since theinfrastructure required for online education has been primary developed by engineers.The perceived obstacles in widespread integration of online courses in engineering curriculumscan be divided into two categories: physical obstacles and cultural obstacles. A major physicalbarrier is how to provide hands-on trainings, which traditionally take place in laboratories andmachine shops, in an online setting. However, this may not be a major problem since, contrary towhat one may expect, the data shows that online education is primary “local”. A little over half ofall students who took at least one online course took some face-to-face courses at the sameinstitution