Engineering at the University of Akron (UA) ran aNational Science Foundation funded Research Experience for Teachers (RET) site from 2012-2016 and started a new cycle in 2016-2019. This paper is a summary of the 2012 – 2016 site.The main objective of this RET site was to bring ten high school science teachers to TheUniversity of Akron (UA) campus for eight weeks each summer to increase their knowledge ofengineering research and enable them to effectively disseminate this knowledge in their highschool classrooms. This was accomplished through a combination of (1) an independent researchproject for each teacher in the laboratory of a UA faculty member and (2) hands-on professionaldevelopment activities to reinforce the fundamentals of engineering
Paper ID #17854Constructionism in Learning: Sustainable Life Cycle Engineering Project(CooL:SLiCE)Dr. Kyoung-Yun Kim, Wayne State University Dr. Kyoung-Yun Kim is an associate professor in the Department of Industrial and Systems Engineering at Wayne State University, where he directs the Computational Intelligence and Design Informatics (CInDI) Laboratory. Dr. Kim’s research focuses on design science; design informatics; semantic assembly design; transformative product design; product life-cycle modeling; design and manufacturing of soft products. Dr. Kim has received external funding from several U.S. federal agencies
writing. She has taught clients across gov- ernment, industry and higher education, including Texas Instruments, Brookhaven National Laboratory, European Southern Observatory (Chile), Simula Research Laboratory (Norway) and the University of Illinois-Urbana Champaign. Christine works closely with Penn State University faculty Michael Alley (The Craft of Scientific Presentations and The Craft of Scientific Writing) and Melissa Marshall (TED, ”Talk Nerdy to Me”) on these courses. Christine is also the director of the Engineering Ambassadors Network, a start-up organization at 25 plus universities worldwide that teaches presentation skills to undergraduate engineering students, particularly women and underrepresented
. (2012). Online Delivery of Electrical Engineering Laboratory Courses,” ASEE Annual Conference and Exposition, San Antonio, June 2012 3. Ko, S and Rossen, S. (2017). Teaching online: A practical guide. New York: NY. Routledge. 4. Astatke, Y, Connor, K.A., Newman, D. L, Attia, J.O. & Nare, O. E. (2016). Growing experimental centric learning: the role of setting and instructional use in building student outcomes” 2016 ASEE Annual Meeting, New Orleans, Paper ID# 17030 5. Connor, K. A., Y. Astatke, C.J. Kim, C. J., A.A. Eldek, H.R. Majlesein, H. R., P. Andrei, J.O. Attia, & K.A. Gullie, C.A. Graves, and A.R. Osareh, A. R. (2015). Simultaneous Implementation of Experimental Centric Pedagogy in 13
to ensure sustained effort throughout the semester. Students can perform experimental work using existing equipment in some of the existing teaching laboratories or in a laboratory that will be established especially for the course as a part of this project. The instructors provide only logistical help in performing experimental and theoretical research.5. During the last week of the semester, groups give oral presentations of their experimental findings. When possible students are encouraged to perform an in-class demonstration of their experiment. Groups are to submit a detailed written report on the experiment as well as the theoretical basis for it and a brief description of linkages between the experiment and the
curriculum modules and laboratorymodules to teach microcontroller concepts. During the second year 60 faculty throughout theU.S. were taught microcontroller/embedded system concepts and exercised hands-on laboratoryexperiment activities using distance learning technologies. Feedback has been favorable. Duringyear three an additional group of faculty will be taught these concepts and an academiccommunity with common interest of embedded system design will be built, bringing the totalfaculty trained to 120.Goals of the Project To accomplish this statement of work, there are four guiding goals that include:1. Create a teaching platform with supporting instructional and hands-on laboratory modules to teach microcontroller concepts and activities
Paper ID #33217Understanding Context: Propagation and Effectiveness of the ConceptWarehouse in Mechanical Engineering at Five Diverse Institutions andBeyond – Results from Year 2Dr. Brian P. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the
. Applying software-defined networking to minimize the end-to-end delay of network services. ACM SIGAPP Applied Computing Review 18, 30–40 (2018). 3. Topham, L., Kifayat, K., Younis, Y. A., Shi, Q. & Askwith, B. Cyber security teaching and learning laboratories: A survey. Information & Security 35, 51 (2016). 4. Sharma, S. K. & Sefchek, J. Teaching information systems security courses: A hands-on approach. Computers & Security 26, 290–299 (2007). 5. Willems, C. & Meinel, C. Online assessment for hands-on cyber security training in a virtual lab. In Global Engineering Education Conference (EDUCON), 2012 IEEE, 1–10 (IEEE, 2012). 6. Xiong, K. & Pan, Y. Understanding protogeni in networking courses for research and
the growingbiofuels and bioprocessing industries. A highly successful aspect of this program wasimplementation of Summer Teaching and Learning Institutes for pre- and inservice educators -primarily those in secondary agriculture programs in the state. The Institutes focused on thescience, technology, engineering, mathematics, and agriculture of sustainable biofuelsproduction and bioprocessing in the Southeast US. A major component of the Institutes wasextensive hands-on instruction including fabrication, field and laboratory modules that utilizedengineering and laboratory equipment that were provided to each participating inservice educatorfor use in his/her school. A total of 33 inservice and preservice educators participated in theSummer
).ActivitiesThe RET program annually supports 13 local K-12 teachers who teach a STEM subject in a six-week summer research internship. Once the teachers have been selected, we attempt to matchtheir interests as stated in their application with those of participating Rice faculty and labs. RETteachers are then paired with a post-doc or graduate student mentor from that lab. Thementorship experience has been shown to be beneficial not only to the participants but alsoprovides a valuable experience to the graduate student mentors.29 One month prior to the start ofthe summer research, all stakeholders connect so that the RET teacher can be better preparedwith background readings and gain familiarity with people and laboratory. Teachers are providedwith a
. • Week 14 (12/7/15): End of Semester Student Expo: Students display work performed during the semester and present that work in small groups to the teaching team and to their peers.4.1.2 Laboratory Deployment SummaryFor the weekly laboratory, the class population is divided into 9-sections with approximately 17-19 students per section. The Fall 2015 laboratory sessions were held in the newly constructedUMass Lowell Makerspace. Similar to the lecture portion of the class, the laboratory had a mod-ular structure: • Week 1 (9/7
. She has authored or co-authored over 50 publications and has served as principal or co-principal investigator on seven grants from the National Science Foundation. At Lafayette College Dr. Roth has served as Department Head of Civil and Environmental Engineering, Director of Engineering, and Associate Provost for Academic Operations in addition to multiple faculty committee assignments. She has led campus-wide accreditation and assessment initiatives, implemented new faculty orientation programs, collaborated on the development of multiple proposals to private foun- dations, and coordinated interdisciplinary academic programs. She has received a number of awards in recognition of her scholarship and teaching
research interests relate to the incorporation of active learning techniques such as game- based learning in undergraduate classes as well as integration of innovation and entrepreneurship into the engineering curriculum. In particular, she is interested in the impact that these tools can have on stu- dent perception of the classroom environment, motivation and learning outcomes. She was selected to participate in the National Academy of Engineering (NAE) Frontiers of Engineering Education Sympo- sium in 2013, awarded the American Society for Engineering Education Educational Research Methods Faculty Apprentice Award in 2014 and the Raymond W. Fahien Award for Outstanding Teaching Effec- tiveness and Educational
Paper ID #9705Evidence for the Effectiveness of a Grand Challenge-based Framework forContextual LearningDr. Lisa Huettel, Duke University Dr. Lisa G. Huettel is an associate professor of the practice in the Department of Electrical and Computer Engineering at Duke University where she also serves as associate chair and director of Undergraduate Studies for the department. She received a B.S. in Engineering Science from Harvard University and earned her M.S. and Ph.D. in Electrical Engineering from Duke University. Her research interests are focused on engineering education, curriculum and laboratory development, and
from the University of Illinois.Prof. Jeremiah Abiade, University of Illinois at Chicago Laboratory for Oxide Research and Education Department of Mechanical and Industrial Engineering University of Illinois at Chicago American c Society for Engineering Education, 2021 Paper ID #33325Dr. Betul Bilgin, University of Illinois at Chicago Betul Bilgin is Clinical Assistant Professor of Chemical Engineering (CHE) at the University of Illinois at Chicago (UIC) and has been teaching the Senior Design I and II courses for 6 years and Introduction to Thermodynamics for
; 3) setting up lightning conditions required for the successful vision error proofingand camera calibration; 4) teaching tool, application, and calibration frames; 5) performing 2Dcalibration and 2D single and multiview robotic processes; 6) performing 3D calibration and 3Dsingle view robotic vision processes. Hands-on training is an integral part of any coursedeveloped in the School of Technology at Michigan Tech, and this course is no exception. It willinclude 12 laboratory exercises, totaling 36 hours, with the goal of providing students theopportunity to configure and execute real-life, industry comparable, robotic vision scenarios. Thecourse will be similar to the existing Real-Time Robotics Systems' rigorous assessment strategyand will
Paper ID #34076Toward a Quantitative Engagement Monitor for STEM EducationDr. Aly A. Farag, University of Louisville Aly Farag, Fellow, IEEE and IAPR: received B.S. in EE from Cairo Univ. M.S. in Bioengineering from the Ohio State and the Univ. of Michigan, and PhD in EE from Purdue. He is a Prof. of ECE at the Univ. of Louisville, and director of the Computer Vision & Image Processing Laboratory, focusing on research and teaching in computer vision, biometrics and biomedical imaging. He introduced over 13 new courses into the ECE curriculum, authored over 400 papers, edited two volumes on deformable models and a
teaching and advising awards including the UIC Award for Excellence in Teaching (2017), COE Excellence in Teaching Award (2008, 2014), UIC Teaching Recognitions Award (2011), and the COE Best Advisor Award (2009, 2010, 2013). Dr. Darabi has been the Technical Chair for the UIC Annual Engineering Expo for the past 7 years. The Annual Engineering Expo is a COE’s flagship event where all senior students showcase their Design projects and products. More than 700 participants from public, industry and academia attend this event annually. Dr. Darabi is an ABET IDEAL Scholar and has led the MIE Department ABET team in two successful accreditations (2008 and 2014) of Mechanical Engineering and Industrial Engineering
Paper ID #6663Incorporating Engineering into the High School Chemistry ClassroomMs. Lisa Arnold, Alma High School, Alma, MI Lisa Arnold has a Bachelor of Science in Chemistry from Alma College with emphasis in Mathematics and Natural Science and a Master of Arts from Central Michigan University in Secondary Education with an emphasis in Mathematics. She has also obtained M.A. +30 with emphasis in Curriculum and Instruction. Lisa has been teaching chemistry at Alma High School for the past seventeen years.Mr. Ze ZhangDr. Tolga Kaya, Central Michigan University Dr. Tolga Kaya currently holds a joint assistant professor
Labor, Dec. 29, 2014. 2. Donovan, S. and Bransford, Ed., “How Students Learn: History, Mathematics, and Science in the Classroom,” Washington, DC: National Academies Press, 2005. 3. Windschitl, M., “Folk Theories of ‘inquiry’: How Preservice Teachers Reproduce the Discourse and Practices of the Scientific Method,” J. of Research in Science Teaching, 41, z81-512, 2004.4. Windschitl, M. and Thompson, J., “Transcending simple forms of school science investigations: Can pre-service instruction foster teachers' understandings of model-based inquiry?” American Educational Research J., 43(4), 783-835, 2006.5. Brown, S. and Melear, C., “Preservice Teachers’ Research Experiences in Scientists’ Laboratories,” J. of
Paper ID #24669Effective Faculty Development – More than Time in the SeatDr. Louis J Everett P.E., University of Texas, El Paso Dr. Everett is the MacGuire Distinguished Professor of Mechanical Engineering at the University of Texas El Paso. Dr. Everett’s current research is in the areas of Mechatronics, Freshman Programs and Student Engagement. Having multiple years of experience in several National Laboratories and Industries large and small, his teaching brings real world experiences to students. As a former NSF Program Director he works regularly helping faculty develop strong education proposals
Paper ID #23738Algebra-Related Misconceptions Identified in a First-Year Engineering Rea-soning CourseDr. Lizzie Santiago, West Virginia University Lizzie Y. Santiago, Ph.D., is a Teaching Associate Professor for the Fundamentals of Engineering Program in the Benjamin M. Statler College of Engineering and Mineral Resources. She holds a Ph.D. in Chemical Engineering and has postdoctoral training in neural tissue engineering and molecular neurosciences. She teaches freshman engineering courses and supports the outreach and recruiting activities of the college. Her research interests include neural tissue engineering
Paper ID #17920A PATTERN RECOGNITION APPROACH TO SIGNAL TO NOISE RA-TIO ESTIMATION OF SPEECHMr. Peter Adeyemi Awolumate P.AMr. Mitchell Rudy, Rowan University Rowan University Electrical and Computer Engineering student.Dr. Ravi P. Ramachandran, Rowan University Ravi P. Ramachandran received the B. Eng degree (with great distinction) from Concordia University in 1984, the M. Eng degree from McGill University in 1986 and the Ph.D. degree from McGill University in 1990. From October 1990 to December 1992, he worked at the Speech Research Department at AT&T Bell Laboratories. From January 1993 to August 1997, he was a
Com- puter Engineering the University of Denver where he was on the faculty from 1986 - 2019. He has received all of his degrees in Electrical Engineering: the B.S. degree from the University of Florida, Gainesville, in 1974; the M.S. degree from the University of New Mexico, in 1978; and the Ph.D. degree from the University of Colorado, Boulder in 1991. Dr. DeLyser, a member of the U.S. Air Force between 1965 and 1986, held a teaching position at the United States Air Force Academy, served as a development engineer at the Air Force Weapons Laboratory at Kirtland AFB in New Mexico and was the Requirements Officer for the Nellis AFB Ranges in Nevada. Prior to 2000, his research areas included pedagogy, outcomes
Paper ID #19347Defining the Frontiers of Bioengineering Education at Illinois and BeyondDr. Jennifer R Amos, University of Illinois, Urbana-Champaign Dr Amos joined the Bioengineering Department at the University of Illinois in 2009 and is currently a Teaching Associate Professor in Bioengineering and an Adjunct Associate Professor in Educational Psychology. She received her B.S. in Chemical Engineering at Texas Tech and Ph.D. in Chemical En- gineering from University of South Carolina. She completed a Fulbright Program at Ecole Centrale de Lille in France to benchmark and help create a new hybrid masters program
(SOPS), a term that describesthe multicomponent organic system that comprises a drug, nutraceutical, or medicineformulation.The workshop modules proposed for the 2012 Summer School will introduce faculty to theessential concepts of pharmaceutical engineering in a way that they can be easily integrated intothe undergraduate curricula at their home institution. This will be accomplished throughinteractive exercises where workshop participants will learn new concepts and then be engagedto explore ways to improve the courses they teach. We will use the approach that we havepracticed at Rowan University, to integrate concepts of new technologies into the traditionalundergraduate chemical engineering curriculum through laboratories/demonstrations, in
AC 2012-3656: ART2STEM: DISCOVERY THROUGH DESIGN LINKSMIDDLE SCHOOL GIRLS TO STEM SKILLS AND CAREER PATHSMs. Sydney Rogers, Alignment Nashville Executive Director of Alignment Nashville (AN) since 2005. AN is a non-profit that supports K-12 education. She was formerly vice-president and dean of technologies at Nashville State Community College for 30 years. Rogers has led several NSF funded grants aimed a reforming teaching and learning. She is currently assisting the Ford Next Generation Learning Initiative as part of the national team.Ms. Sandra M. Harris, Alignment Nashville and PENCIL Foundation Sandra Harris is the Program Manager for Art2STEM, a three-year grant that the National Science Foun- dation awarded
course and curriculum development. He is a Fellow of the ASME.Dr. Bonnie H. Ferri, Georgia Institute of Technology Dr. Bonnie Ferri is a Professor in the School of Electrical and Computer Engineering and a Vice Provost at Georgia Tech. She performs research in the areas of active learning, embedded controls and computing, and hands-on education. She received the IEEE Undergraduate Education Award and the Regents Award for the Scholarship of Teaching and Learning. She received her BS in EE from Notre Dame, her MS in ME/AE from Princeton, and her PhD in EE from Georgia Tech.Dr. Robert S. Kadel, Georgia Institute of Technology Dr. Rob Kadel is Assistant Director for Research in Education Innovation with the Center for
-hour group discussion session will be reserved for all REU students to share their experiences during the week. They may exchange concepts on design competition, seek moral support from each other, or reach collective opinions to feedback to program director on program improvement. This interaction will bring them closer together to nurture long-term partnerships and maximize their achievement through experience sharing. REU students are empowered for the organization of this session with minimal supervision.(B) Weekly seminar and professional development session: The first few sessions will deal with teaching the students good research practices, including design of experiments, laboratory safety, data and error
processing. He is a co-inventor on 3 US patents related to control systems. Dr. McLauchlan is a member of ASEE and was the 2012-2014 Chair of the Ocean and Marine Engineering Division. He is also a member of IEEE (senior member), SPIE, Eta Kappa Nu, ACES and Tau Beta Pi, and has served on the IEEE Corpus Christi Section Board in various capacities such as Chair, Vice Chair, Secretary and Membership Development Officer. Dr. McLauchlan has received the Dean’s Distinguished Service Award twice and the Dean’s Outstanding Teaching Award once for the College of Engineering at Texas A&M University-Kingsville.Dr. David Hicks David Hicks is an Associate Professor in the Electrical Engineering and Computer Science Department