those involved when choosing to return toparticipants for further consent. The research design of the SDA project was presented at theAmerican Indian Science and Engineering Society (AISES) National Conference [2]. Theimportance of positionality of the researchers is further explored in [3].Lessons from the Mini-ProjectsOverall, three significant results have emerged from the work to date: 1. Ethical considerationsNeither original research study was designed with SDA in mind, leading to extendednegotiations with university review boards. Ideally, researchers could plan for SDA prior to datacollection, first carefully considering whether the planned data could and should be available forSDA and, then, as appropriate, defining the project scope
application of individual research methods [5; 17].With these characteristics of the field of engineering education research in mind, the goal at theoutset of this project was to build on an initial theoretical understanding of research quality withthe view to developing a quality framework that reflects the practices of engineering educationresearchers. This goal was to be achieved through two streams (see below) of integrated datagathering and educational workshops and the qualitative analysis of the data using iterativecoding methods of constant comparison [19; 20; 21; 22; 23]. Page 26.303.2 Stream A: In-depth longitudinal workshops
, specialized faculty support the instructors in each course. Elements supportingeach of these threads exist in each of the courses, increasing in maturity across the first threecourses, and culminating in application of these skills in the fourth-year course: Capstone Design.RQ2: What pedagogies appear to be more effective in advancing multiple learning objectivessimultaneously? To address this question, individual instructors are given the opportunity to engage withspecific pedagogies identified to support holistic engineers and EM: problem-based learning, the3Cs of entrepreneurially minded learning, value sensitive design, and story-driven learning.Problem-based learning is an approach to problem solving that is primarily student-driven and
Paper ID #26899Board 58:Need-Based Scholarship Program: Who is Applying, Who is Suc-cessful, and Who is Not Applying?Dr. Anastasia Marie Rynearson, Campbell University Anastasia Rynearson is an Assistant Professor at Campbell University. She received a PhD from Purdue University in Engineering Education and a B.S. and M.Eng. in Mechanical Engineering at the Rochester Institute of Technology. Her teaching experience includes outreach activities at various age levels as well as a position as Assistant Professor in the Mechanical Engineering Department at Kanazawa Technical College and Future Faculty Fellow teaching First
Conference Proceedings.[3] ASME, 1995, “Integrating the product Realization Process (PRP) into the Undergraduate Curriculum,” (a curriculum development project of the ASME Council on Education, ASME, December 1995.[4] Brancaccio-Taras, L., Mawn, M. V., Premo, J., & Ramachandran, R. (2021). Teaching in a Time of Crisis: Editorial Perspectives on Adjusting STEM Education to the “New Normal” during the COVID-19 Pandemic.[5] Bransford, J. D., Brown, A. L., and Cocking, R. R. (eds.). How People Learn: Brain, Mind, Experience, and School. Washington, D.C.: National Academy Press, 1999.[6] C. Chaplin, ‘Creativity in Engineering Design – The Educational Function,” The Education and Training of Charted Engineers for the 21st
validation, financial knowledge, motivation and self-efficacy, and social support[1], [3], [4]. The research questions are designed with TSC in mind and to support achievementof the purposes of the project. The research questions guiding this grant are: RQ1: What are assets, factors, and strategies that enable access for two- year college students to engineering transfer pathways? RQ2: Do assets, factors, and strategies vary in magnitude and/or presence across student demographics, locations, institutions, or intention to transfer? RQ3: How does use of digital learning tools and resources impact transfer outcomes for pre-transfer engineering students? RQ4: To what extent can transfer outcomes be
, technology integration, online course design and delivery, program evaluation, and assessment. Dr. Lux’s current research agenda is STEM teaching and learning in K-12 contexts, technology integration in teacher preparation and K-12 contexts, educational gaming design and integration, and new technologies for teaching and learning.Dr. Brock J. LaMeres, Montana State University Dr. Brock J. LaMeres is a Professor in the Department of Electrical & Computer Engineering at Mon- tana State University (MSU) and the Director of the Montana Engineering Education Research Center (MEERC). LaMeres is also the Boeing Professor at MSU where he is responsible for initiatives to im- prove the professional skills of engineering
Across Academic Disciplines. Journal of College Student Psychotherapy, 2016. 30(1): p. 23-41.2. Jensen, K.J. and K.J. Cross, Engineering stress culture: Relationships among mental health, engineering identity, and sense of inclusion. Journal of Engineering Education, 2021. 110(2): p. 371-392.3. Whitwer, M., S. Wilson, and J. Hammer. Engineering Student Mental Health and Help Seeking: Analysis of National Data from the Healthy Minds Study. in 2023 IEEE Frontiers in Education Conference (FIE). 2023. IEEE.4. Hargis, L.E., C.J. Wright, M.E. Miller, E.E. Usher, J.H. Hammer, and S.A. Wilson. Relationship Between Mental Health Distress and Help-Seeking Behaviors Among Engineering Students. in American Society
people with different forms of expertise working on multiple facets orcomponents of the project. To ensure a diverse sample in terms of personal andacademic/professional background, we were also mindful of a number of diversity criteria in ourrecruitment and selection of participants, including in participants’ level and type of engineeringexperience, field of engineering, and sociodemographic traits such as race, ethnicity, and gender.Students were recruited from two universities – one a selective public research university andanother regional public university. Professional engineers were recruited locally from a varietyof industries. Interviews were conducted in person and lasted approximately 60 to 90 minutes byone member of our research
: ● Introduction to Library Resources & Literature Review – Typically condicted at the beginning of the program, this session brings engineering librarian specialists to introduce students to library and online resources available to researchers. Students conduct a literature review with guidance and feedback from mentors. ● Mind Mapping/Systems Thinking – This workshop introduces Mind Mapping [9] as a tool for Systems Thinking. Participants use both software and pen-and-paper methods practice systems level understanding of not just technical, but societal, ethical, and global implications of their topic. They visualize and situate their research in the context of the vision of the Center as well as the broader
creation and in an ethical context of society.Notable throughout is the concentration on big picture ideas. There was very little discussionabout material in engineering or sustainability education that causes problems or issues, butmuch more discussion on the framing of sustainability in the first place, the structural positioningof sustainability thought within the existing educational and academic paradigms (or, often, incontrast to the existing paradigms) of science and engineering, and the relationships ofsustainability (an, in fact, science) to values, ethics, and epistemology.The comments had an almost-universal anti-reductionist current. Several posts pointed out theneed to move beyond traditional reductionist approaches and frames of mind
other new transfer students in engineering. The C/Mstudents suffered no statistically significant lowering of their average GPA, while the otherstudents suffered about a half point (0.445 grade). The much higher graduate rate was alreadymentioned. A survey showed that 70% of the students in the C/M program now headed forgraduate school, had not intended to go to graduate school when they entered the C/M program.The information, encouragement, and word-of-mouth from C/M students who are now ingraduate school changed their minds. The director of this program has researched, presented,and published over 170 papers on transfer students, CC transfer students, Academic SuccessClasses, and other related topics. Due to these papers, schools nationally
) situated within the transfer transition, and one (Trying to Fit the Full-time Profile)situated at UMKC.MCC ObstaclesUncertainty about Engineering Major and/or UMKC referred to the reality that MCC studentswere often unsure of which major to select. Even if they selected engineering as a major, theysometimes struggled to select an engineering specialty. As study participants described: [A barrier is] the length of time that people can be spinning in the washing machine without deciding exactly what they want to do, without completing all the prerequisite coursework to get into a particular major … If you do a transfer major, you are basically taking general education classes, which both means that you can change your mind
Paper ID #32705Measuring Connections: Novel Methods and FindingsDr. Elise Barrella P.E., DfX Consulting LLC Dr. Elise Barrella is the founder and CEO of DfX Consulting LLC which offers engineering education and design research, planning and consulting services. She is a registered Professional Engineer and was a Founding Faculty member of the Department of Engineering at Wake Forest University. She is passionate about curriculum development, scholarship and student mentoring on transportation systems, sustainabil- ity, and engineering design. Dr. Barrella completed her Ph.D. in Civil Engineering at Georgia Tech where
Paper ID #9705Evidence for the Effectiveness of a Grand Challenge-based Framework forContextual LearningDr. Lisa Huettel, Duke University Dr. Lisa G. Huettel is an associate professor of the practice in the Department of Electrical and Computer Engineering at Duke University where she also serves as associate chair and director of Undergraduate Studies for the department. She received a B.S. in Engineering Science from Harvard University and earned her M.S. and Ph.D. in Electrical Engineering from Duke University. Her research interests are focused on engineering education, curriculum and laboratory development, and
that faculty need immersive training in cultural responsiveness, and that suchtraining is the lowest hanging fruit [3]. Furthermore, Mack and colleagues clearly document thebreadth and depth of the cultural disconnect between engineering faculty and their students,explaining that this problem cannot be fixed with a checklist, and instead call for the cultivationof mindfulness among faculty [4].One reason that attempts to change faculty behaviors fail may be how independently facultyoperate in the classroom. Any attempt to shift teaching practices cannot rely on top-downmandates, but instead needs top-down support with bottom-up encouragement from colleagues,accompanied by a shift in the overall culture of a college of engineering. By providing
located on the South Campus. And, recognizing that healthy minds need healthy food choices, the college has a food and resource bank for any student in need. Finally, to generate confidence in program completion and matriculation, the college offers an open laboratory every Friday where students utilize equipment, make up work, and formulate study groups. During the Introduction to Engineering course, faculty introduce students to the Project Graduation program where counselors and students work together to map their educational experience—from the first engineering course at San Jacinto College to the final class in completing a four-year engineering degree. 3. South Texas College, McAllen, TX for
and Opportunities, Springer, 2013.15. Riley, Donna, Engineering and Social Justice, San Rafael, CA: Morgan and Claypool Publishers, 2008.16. Bransford, John D., Brown, Ann L., and Cocking, Rodney R., (Editors), How People Learn: Brain, Mind, Experience, and School, Washington, DC: National Academies Press, 2000.17. Ambrose, Susan A., Bridges, Michael W., DiPietro, Michele, Lovett, Marsha C., Norman, Marie K., How Learning Works: Seven Research-Based Principles for Smart Teaching, San Francisco, CA: Jossey-Bass, 2010.
Paper ID #25639STEM Servingness at Hispanic Serving InstitutionsDr. Vignesh Subbian, The University of Arizona Vignesh Subbian is an Assistant Professor of Biomedical Engineering, Systems and Industrial Engineer- ing, member of the BIO5 Institute, and a Distinguished Fellow of the Center for University Education Scholarship at the University of Arizona. His professional areas of interest include medical informatics, healthcare systems engineering, and broadening participation in engineering and computing. Subbian’s educational research is focused on ethical decision-making and formation of identities in engineering.Dr
Connecting Mentor Partners forAcademic Success of Undergraduates in Science, Engineering, and Mathematics.”https://www.nsf.gov/awardsearch/showAward?AWD_ID=1930461 (accessed April 27, 2023)2. H. McDevitt. “Haley McDevitt.” https://www.haleymcdevitt.com/ (accessed April 27, 2023)3. David Sibbet, "A graphic facilitation retrospective," Adapted from presentation at theInternational Association of Facilitators The Art and Mastery of Facilitation–Navigating theFuture IAF Conference, pp. 16-20, 2001.4. A. Gonzalez. “A Mindful Way to Reflect: Rose, Thorn, and Bud.” mindfulschools.orghttps://www.mindfulschools.org/inspiration/mindful-reflection/ (accessed April 27, 2023)5. Karima Kadi-Hanifi, Ozlem Dagman, John Peters, Ellen Snell, Caroline Tutton &
Paper ID #18133Research Experiences for School Teachers and Community College Instruc-tors in Smart-Vehicles: Initial Implementation and AssessmentDr. Kumar Yelamarthi, Central Michigan University Kumar Yelamarthi received his Ph.D. and M.S degree from Wright State University in 2008 and 2004, and B.E. from University of Madras, India in 2000. He is currently an Associate Professor of Electrical & Computer Engineering at Central Michigan University. His research interest is in the areas of Wireless Sensor Networks, Internet of Things, computer aided design tool development, assistive devices, au- tonomous adaptive
, scholars havereported that the interactions with like-minded peers helped them achieve success in theirundergraduate career at NC State University.AcknowledgementsThis program was supported by the National Science Foundation under grant DUE# 1259630.The authors thank all the students and mentors that have participated in this project, the input inthe early phase of the project with Dr. M. Fuentes, Dr. A. Mitchell, Dr. J. Picart, Dr. C. Zelnar,and Dr. M. Stimpson. We are thankful for the support and assistance of the Dean of the Collegeof Engineering, NCSU College of Engineering Minority Engineering Program, NCSUEngineering Place and the local Society of Women Engineering (SWE) Chapter.References 1. NC State STEM Scholars https://www.ece.ncsu.edu
Statistics, NCES-2011015[5] National Center for Education Statistics, 2011. Postsecondary Awards in Science, Technology, Engineering, and Mathematics, by State: 2001 and 2009, U.S. Department of Education, April 2011, NCES 2011-226.[6] Bransford, J.D., Brown, A.L. and Cocking, R.R, 1999. How People Learn: Brain, Mind, Experience, and School. Washington DC: National Academy Press.[7] Chubin, D.E., May, G.S. and Babco, E.L., 2005. “Diversifying the Engineering Workforce.” Journal of Engineering Education. 94(1): 73–86.[8] Felder, R.M., Sheppard, S.D. and Smith, K.A., 2005. “A New Journal for Field in Transition.” Journal of Engineering Education. 94(1), 7–12.[9] Yurtseven, H. O., 2002. “How Does the Image of Engineering Affect Student
Science (MAS) program, which involves system-based courses that evaluate domestic and international agricultural system resilience. Dr. Motschenbacher holds a PhD in Soil Physics (2012, Univ. of Arkansas), an MEd in Higher Education Administration (Middle Ten- nessee State Univ., 2007), and a BS in Agribusiness (Middle Tennessee State Univ., 2007). Academic po- sitions she has held include Postdoctoral Researcher in Biosystems Engineering (Iowa State Univ., 2013), Instructor/Adjunct/Assistant Professor of Practice of Soil Science (North Dakota State Univ., 2014-2022), and Associate Director of the Office of Teaching and Learning (North Dakota State Univ., 2016-2022). Within the past 15 years, she has designed and
toward better practice.The three-year FLC followed the three-part structure of the Colorado Equity Toolkit [14], whichis a freely available collection of curated resources to support inclusive teaching at all levelsfrom primary through postsecondary education. During 2021/22, the first year of the FLC,ENNTICE emphasized self-inquiry, reflection, and mindfulness [15]. During 2022/23, thesecond year of the FLC, ENNTICE emphasized inclusive course design [16]. Here we reportselected results from 2023/24, the third year of the FLC, when ENNTICE emphasized buildingcommunity. These results have been selected to answer the research question: To what degreedoes faculty participation in an FLC impact engineering college culture?MethodsFor the purpose of
many industries such as automotive, chemical distribution etc. on transportation and operations management projects. She works extensively with food banks and food pantries on supply chain management and logistics focused initiatives. Her graduate and undergraduate students are integral part of her service-learning based logistics classes. She teaches courses in strategic relationships among industrial distributors and distribution logistics. Her recent research focuses on engineering education and learning sciences with a focus on how to engage students better to prepare their minds for the future. Her other research interests include empirical studies to assess impact of good supply chain practices such as
AC 2012-3739: GRAND CHALLENGES DELI (DISCOVER, EXPLORE,LEARN, IMAGINE) PROJECTDr. Jane Hunter, University of Arizona Jane Hunter received her Ph.D. from the University of Arizona Center for the Study of Higher Education. She holds an M.S. degree in engineering management and a B.S. degree with distinction in mechanical engineering. She is the Associate Director of the Engineering Management program at the University of Arizona and is a PMI-certified Project Management Professional (PMP). Her areas of interest include engineering education, teaching strategies, assessment and evaluation of program objectives and learning outcomes, student teamwork and group dynamics, business and technology management, strategic and
links between student'spsychological state of mind and their academic performance and persistence over the course of asemester in a Statics class. It is well known that students perceive Statics as a "threshold" or"weed out" class due to its low passing rates [1, 2] that are often below 70%. Students who areunable to pass the course may ultimately withdraw from an engineering major. As a result,persistence and retention in engineering is hampered, which is typically magnified inunderrepresented groups.The primary goal of this research is to identify links between students' self-efficacy, motivation,emotional states, and other factors that may serve as early-warning indicators of dropout. Theresearch is based, in part, on the fundamental concept
Paper ID #21753The Impact of Metacognitive Instruction on Students’ Conceptions of Learn-ing and their Self-monitoring BehaviorsDr. Patrick J. Cunningham, Rose-Hulman Institute of Technology Patrick Cunningham is an Associate Professor of Mechanical Engineering at Rose-Hulman Institute of Technology. During the 2013-14 academic year he spent a sabbatical in the Department of Engineering Education at Virginia Tech. Dr. Cunningham’s educational research interests are student metacognition and self-regulation of learning and faculty development. His disciplinary training within Mechanical Engineering is in dynamic systems and
, plusmembers of the public sector interested in thermodynamic principles.This project is supported by the National Science Foundation (NSF) TransformingUndergraduate Education in Science, Technology, Engineering and Mathematics (TUES)program.ReferencesBaser, Mustafa (2006), 'Promoting conceptual change through active learning using open source software for physics simulations', Australasian Journal of Educational Technology, 22 (3), 336- 54.Bo-Kristensen, Mads, et al. (2009), 'Mobile City and Language Guides - New Links Between Formal and Informal Learning Environments', Electronic Journal of e-Learning, 7 (2), 85-92.Bransford, J., A. Brown, and R. Cocking (2000), How People Learn: Brain, Mind, Experience and School, (Washington