Engaging Freshmen Women in Research – Feedback from Students and Best Practices for FacultyIntroductionIncreasing the participation of diverse populations in engineering and technology fields is achallenge for many universities. A significant means to address this issue is to increase theparticipation of women students. However, this can prove to be challenging. In a studyconducted by Marra and Bogue,1 it was found that although women engineering students enterthe university with high levels of self-confidence and self-esteem, those levels decline quicklyduring the first year. They also found through their research, that the initial levels were neverregained. One method to help retain diversity in engineering and technology
Engineering Education Center dedicated to engineering education related initiatives and research focused on building diversity and enhancing the educational experience for all engineering students. Dr. Shehab teaches undergraduate and graduate level courses in ergonomics, work methods, experimental design, and statistical analysis. Her current research is with the Research Institute for STEM Education, a multi-disciplinary research group investigating factors related to equity and diversity in engineering student populations.Ms. Cindy E Foor, University of Oklahoma Cindy E. Foor is the Associate Director/Research Associate for the Research Institute for STEM Ed- ucation (RISE) at the University of Oklahoma. Her
vision and our future.Prof. Oscar Antonio Perez, University of Texas, El Paso Mr. Oscar Perez received his B.S. and Masters in Electrical Engineering from the University of Texas at El Paso with a special focus on data communications. Awarded the Woody Everett award from the American Society for engineering education August 2011 for the research on the impact of mobile devices in the classroom. He is currently pursuing a PhD in Electrical and Computer Engineering. Mr. Perez has been teaching the Basic Engineering (BE) – BE 1301 course for over 7 years. Lead the design for the devel- opment of the new Basic Engineering course (now UNIV 1301) for engineering at UTEP: Engineering, Science and University Colleges
-based research topics as students are into the second year of their research projects. Thecurriculum will introduce students to practices in many areas of engineering and relateddisciplines. During the course, students apply programming and electronics knowledge to theRaspberry Pi computer and interface with a variety of sensors for real world data collection, suchas wireless water quality sensors. Students can also use robotics platforms for understandingbasic concepts in kinetics, control, programming, and intelligent systems. Other projects arerelated to the design and development of floating platforms and turbines for offshore windenergy. While the aim of this course is on integrating general engineering practices with scienceconcepts, we
lecture courses on developing creativity and research skills. Her current research focuses on identifying impacts of differ- ent factors on ideation of designers and engineers, developing instructional materials for design ideation, and foundations of innovation. She often conducts workshops on design thinking to a diverse range of groups including student and professional engineers and faculty member from different universities. She received her PhD degree in Design Science in 2010 from University of Michigan. She is also a faculty in Human Computer Interaction Graduate Program and the ISU Site Director for Center for e-Design.Dr. Shanna R. Daly, University of MichiganEli M. Silk, Rutgers, The State University of New
Page 26.894.8Findings section of this paper show results indicating that YSP students showed highlysignificant gains in all areas examined: 1) Fundamentals of neuroscience, engineering, andneuroethics research, 2) Neural engineering best practices, and 3) Connections to neuralengineering industry and careers.Post-program Reflective SurveysAn end-of-program survey was given to YSP students at the conclusion of each summer programto measure the impact on students’ content knowledge and skill set competency in areas ofneural engineering. A retrospective pre-test design was used on some survey questions todetermine if there were statistically significant differences in knowledge of neural engineeringskill sets.13 Considerable empirical evidence
Council of Advisors on Science and Technology (PCAST) in their2012 report2, the fastest way to generate graduates and attain our goal is through differentmethods of teaching, supporting and retaining students. Finding ways to engage them and helpthem to persist is critical to attainment of our goal6. In the following discussion, our partnershipoffers a number of Best Practices that help to generate and maintain students early in thepipeline, engage institutions to common purposes for the good of the students, create cleararticulated pathways in order to build the trust of students and parents, and work with industrialstakeholders as they are realizing that they can no longer take a passive role simply waiting forstudents to exit the
students for the changingdesign processes they will encounter after graduation.17,18 Incorporating stakeholder interactioninto the design process can be challenging for students who do not typically encounter thesetasks during early engineering coursework. Prior research on student understanding and use ofstakeholder interaction during the design process has found that students do not always interactwith stakeholders successfully (as outlined in the design practice literature).19–21 Some of thedifficulties student encounter when attempting to interact with stakeholders causes them toneglect or dismiss stakeholder interaction during design.20,22 Thus, more research is needed todevelop pedagogy for teaching these complex processes.This study sought
authored/co-authored over a hundred technical papers and reports during his career in private industry, government and academia. His current research interests are nearshore wave transformations, coastal structures, tsunami inundation, hurricane surges, high performance computing, and engineering education. Page 26.73.1 c American Society for Engineering Education, 2015 A New Coastal Engineering Graduate ProgramAbstractA Master of Science degree in Engineering with a Coastal Engineering concentration has beenapproved, students enrolled and several graduates are scheduled for
international research programs found that, in addition to the technical andprofessional impacts, the global or transcultural aspects of these experiences include: a) fuelingthe emergence of ‘best practices’ effective in sustaining transcultural collaborations, b)encouraging the innovative development of a ‘shared work space’ to accommodate culturaldifferences, c) developing and extending research communities beyond the U.S., d) increasingnon-English language proficiencies, e) affirming the centrality and power of language, and f)contributing to solutions of the ‘Global Grand Challenges’.23Despite these benefits, there remains a need for more assessment of specific outcomes. Aworkshop report issued by Sigma Xi regarding how to assess international
Jacobs Excellence in Education Award, 2002 Jacobs Innovation Grant, 2003 Distinguished Teacher Award, and 2012 Inaugural Distinguished Award for Excellence in the cate- gory Inspiration through Leadership. Moreover, he is a recipient of 2014-2015 University Distinguished Teaching Award at NYU. In 2004, he was selected for a three-year term as a Senior Faculty Fellow of NYU-SoE’s Othmer Institute for Interdisciplinary Studies. His scholarly activities have included 3 edited books, 7 chapters in edited books, 1 book review, 55 journal articles, and 109 conference papers. He has mentored 1 B.S., 16 M.S., and 4 Ph.D. thesis students; 31 undergraduate research students and 11 under- graduate senior design project teams
STEM” project in Puerto Rico, and the Latin and Caribbean Consortium of Engineering Institutions’ (LACCEI) ”Women in STEM” forum. Tull is a Tau Beta Pi ”Eminent Engineer.”Dr. Alexis Y. Williams, University of Maryland Baltimore County Dr. Alexis Y. Williams serves as a member of the Department of Human Development and Quantitative Methodology teaching faculty at the University of Maryland, College Park. She is Assistant Director for PROF-it (Professors-in-Training), a University System of Maryland teaching professional development program housed at UMBC, designed for STEM graduate students and postdocs, and open to any who are interested in academia. Her research, teaching, and service address achievement motivation
, Alabama. Dr. Glenn returned to Huntsville after starting school at Alabama A&M years ago. He is now leading the college through its expansion to prepare students and researchers to meet the global needs of the 21st century. Dr. Glenn is also the President and Executive Director of the newly formed Alabama A&M Research, Innovation, Science and Engineering (AAMU-RISE) Foundation. The Foundation’s mission is to create new opportunities for the region in research and development. Prior to coming to A&M he was the Associate Dean of Graduate Studies at the Rochester Institute of Technology in Rochester, New York. He holds several patents and is internationally recognized for research in rf communications and
, personality, and assessment. He is director of the Individual and Team Performance Lab and the Virtual Team Performance, Innovation, and Collaboration Lab at the University of Calgary, which was built through a $500K Canada Foundation for Innovation Infrastructure Grant. He also holds operating grants of over $300K to conduct leading-edge research on virtual team effectiveness. Over the past 10 years Tom has worked with organizations in numerous industries includ- ing oil and gas, healthcare, technology, and venture capitals. He is currently engaged with the Schulich School of Engineering at the University of Calgary to train, develop, and cultivate soft-skill teamwork competencies in order to equip graduates with strong
Developed from a Research-Informed FrameworkI. IntroductionThis document describes an introductory helicopter aerodynamics and design engineering coursefor undergraduates in aeronautical or aerospace engineering. The three major sections of thisdocument are Content, Assessment, and Pedagogy. These sections have been developedaccording to Engineering Education research principles and findings, such that the three sectionsare aligned with one another. Each section presents at least one tool to guide coursedevelopment. The course’s foundation is to provide authentic practice for meaningful learning.The primary purposes of this paper are to present a unified strategy and a toolkit for developingengineering courses in Figure 1 and to use helicopter
higher education and improve learning outcomes. Her research to date has focused on educational designs that emphasize learner ini- tiative and agency through inquiry or problem-based learning in formal and informal learning contexts. She has published several papers on the characteristics of learning environments that support or constrain opportunities for any students (including those from non-dominant backgrounds) to participate in key science and engineering process skills such as scientific argumentation. Her work is largely informed by the principles and perspectives on human development and cognition articulated by Cultural Historical Activity Theory. Putting theory into practice, she teaches a service-learning
a breaktime which also plays an important role in the learning environment. A particular roomand adjacent outdoor area was designated for breaks and “hanging out” before and after theprogram. Peer mentors were in charge of food preparation and each day nutritious snackswere provided. Sharing food is one of the most common forms of human camaraderie aswell as a basic need 7 and incorporating this into the program was an important part ofcohort building. Many participants would also join in, bringing food from their homes toshare with the group. From a more practical standpoint, providing food can enhancelearning and well-being for those students who leave home for an early start withoutbreakfast.2. Themed Contextualized LearningThe quest for
;M University- Kingsville, is interested in sustainable manufacturing, renewable energy, sustainability assessment, and engineering education. Dr. Li has served as PI and Co-PI in different projects funded by NSF, DOEd, DHS, and HP, with a total amount of more than 2.5 million dollars.Prof. Mohamed Abdelrahman, Texas A&M University-Kingsville Dr. Abdelrahman is currently the Associate Vice President for Research and Graduate Studies and a Professor of Electrical Engineering at Texas A&M University Kingsville. Dr. Abdelrahman has a diverse educational and research background. His research expertise is in the design of intelligent measurement systems, sensor fusion and control systems. He has been active in
University-Kingsville Dr. Abdelrahman is currently the Associate Vice President for Research and Graduate Studies and a Professor of Electrical Engineering at Texas A&M University Kingsville. Dr. Abdelrahman has a diverse educational and research background. His research expertise is in the design of intelligent measurement systems, sensor fusion and control systems. He has been active in research with over 80 papers published in refereed journals and conferences. He has been the principal investigator on several major research projects on industrial applications of sensing and Control with focus on Energy Efficiency. He is a senior member of IEEE, ISA, and a member of ASEE.Dr. David Ramirez, Texas A&M University
participate in the program.This paper will discuss the successes, obstacles, and best practices in developing andimplementing academic support programs for two-year college engineering students. Page 26.1244.21. IntroductionThere is a large push from multiple directions to increase the number of students in the UnitedStates graduating with STEM degrees. Recent projections show that there must be a 34%increase of students graduating in STEM fields within the next decade to allow the US to remaincompetitive on the world stage. (1) There are numerous academic routes for students to enter aSTEM field and due to the rising cost of traditional 4-year
University. His research in- terests include low-power, reliable, and high-performance circuit design for nano-scale technologies. He has many publications in journals and conferences and 5 U.S. patents. He was a recipient of the 2008 SRC Inventor Recognition Award, the 2006 IEEE Circuits and Systems Society VLSI Transactions Best Paper Award, 2005 SRC Technical Excellence Award, and the Best Paper Award of the 2004 International Con- ference on Computer Design. He is a technical program committee member of International Symposium on Low Power Electronics Design and International Symposium on Quality Electronics Design.Dr. Cheng Chen, San Francisco State University Dr. Cheng Chen is currently an assistant professor in the
panel brings together a group of men with diverse backgrounds and experiences to discusstheir perspectives and offer practical skills for men to effectively serve as advocates for genderequity. This paper augments the panel and captures the backgrounds, experiences, perspectives,and recommendations of the panelists, thereby providing a lasting resource for those unable toattend the panel or future interested individuals. The information we present targets men andadministrators, who will better understand the barriers to advocacy, learn best-practices ofeffective advocacy, and hear first-hand experiences of successful advocacy.BackgroundMany factors – systemic and non-systemic, conscious and unconscious, policy and climate – cannegatively impact
. With expertise in the design of PD and learning communities, Beth leads a collaboration with educators as co-PI on an NSF K12 engineering education project. She is the 2014 Carnegie Foundation for the Advancement of Teaching and the Council for Advancement and Support of Education Massachusetts Professor of the Year.Ms. Isabel Huff, Springfield Technical Community College After participating in the instructional design of Through My Window during her four years as an un- dergraduate, Isabel is thrilled to be working full-time as the outreach coordinator. She graduated summa cum laude from Smith College with a double major in Economics and Spanish in Spring 2014 and now works on the Springfield Technical
materials developed for this program.Teachers/Instructors Recruitment and SelectionThe program targets teachers/instructors who 1) are teaching math, science, or career andtechnology education (CATE) and/or involved in robotics-related activities such as BoostingEngineering, Science and Technology (BEST) competitions. Instructors from institutions withhigh percentages of minority and socio-economically disadvantaged students were encouraged toapply. A flyer was designed and direct emailed to over 800 STEM teachers and administrators atschool districts and two-year colleges in Texas. In addition, information about the program wasdistributed via ASEE’s Engineering Technology Division’s listserv (ETD-L) and at the annualHigh Impact Technology Exchange
collaboration between the School of Engineering and the local community hasbeen positive and very successful. In this paper, several Senior Design projects are discussed.The assessment and evaluation of ABET Student Outcomes using the Senior Design course ispresented and discussed as a means of directly measuring curriculum success. Engineering’sSenior Design course has had a direct impact on the local community, often with a significantreturn on investment for industrial partners. The significance of this community engagement hasresulted not only in the employment of all of our seniors at graduation, but also in the program’srapid growth.1. IntroductionWestern Illinois University in Macomb, Illinois was granted permission to create a new Schoolof
between science and technology, and understand or apply the engineering designprocess, recognizing design constraints and trade-offs of each design.8 Unfortunately, thereexists a lack of access to adequate resources – including qualified STEM teachers.9According to the National Science Board (NSB), teacher quality is one of the most importantfactors that influence student learning, and ongoing professional development is one of thefactors that affect teacher quality. The NSB cited work done by researchers Boyd, et al.;10Clotfelter, Ladd, and Vigdor;11 Goe;12 Guarino, Santibanez, and Daley;13 Hanushek;14 and Harrisand Sass15 that corroborates the positive impact that high-quality teaching has on student
the Associate Dean for Student Affairs in the UMass Amherst College of Engineering. She has over 30 years experience in recruiting, retaining and graduating engineering students. From 2003 through 2007, she also served as Director of Education, Outreach and Diversity for CASA - an NSF Engineering Research Center. She has been a Co-PI and Program Director for several previous CSEM and S-STEM awards. Page 26.1543.1 c American Society for Engineering Education, 2015 The Impact of Federally Funded Scholarship Programs on the Success of Transfer Students at a Public
college students: exponential attrition,lack of social and academic integration, lack of awareness of academic options, and low self-efficacy.Although much research has been conducted on successful recruitment and retention strategiesfor students at four-year universities, there is scant information on the practices that aresuccessful for community college students. As the STEM Center has moved forward with newinitiatives, data collection and research have been key components of all programs and servicesoffered.2. Exponential AttritionThe PCAST report identified retention efforts in the first two years of college as a key and costeffective strategy for increasing the overall number of STEM graduates.2 Unfortunately,traditionally underrepresented
withinternational collaborations, preparing for an international conference, observations as youtravel, challenges, and expectations.2. a) What did you learn from the Wednesday plenary and the Women in STEM and Diversitypanels? b) Is there a research benefit to meeting someone in person versus using technology toconnect?3. a) Please describe the impact of having a mixed group of faculty (external to your university)and graduate students. b) Has this trip facilitated any collaborations or research ideas that moveyou closer to your academic goals? c) How can an excursion like this one contribute to career-life balance? Page 19.30.104. How does this picture of
the kiosk staff, public relations, amongothers. The students would work in close coordination with these other teams. The studentsattended bi-weekly “all hands” meetings, where they would regularly report on their progress.This is in addition to the in-class presentations associated with the Senior Design course.The students were charged with the technical design and specifications of the energy kiosk.Many factors would influence the design, including: best practices of energy development workin LEDCs; international and local electrical codes; component availability; and non-technicalconstraints and considerations. The scope of the project and the composition of the project teamprovided an enriching learning environment for the students.3