Paper ID #14771Oral History Project of Underrepresented Leaders in Science, Technology,Engineering, and Mathematics (STEM)Ms. Kelsey Morgan Irvin, Washington University in St. Louis Kelsey Irvin is a senior at Washington University in St. Louis double majoring in the Cognitive Neuro- science track of Philosophy-Neuroscience-Psychology and Psychology and hopes to pursue a career in clinical psychology. She is currently working on her honors thesis, which involves using neural measures to research reward processing in preschoolers with depression.Miss Elizabeth Hiteshue, University of Pennsylvania Elizabeth Hiteshue
universities, where the researchers asked participants aboutproblems they encountered during their engineering curriculum and to comment on problemscenarios. Findings suggest that students often lack resources for effectively solving teamproblems, though “high achieving” students, defined as having a self-reported GPA of 3.5 orabove, are often more proactive when dealing with slacker teammates, using strategies such assetting early deadlines or selecting teammates known also to be high achievers. However, acrossthe board, students preferred to “do nothing” when dealing with domineering or exclusionaryteammates.These findings shed light on the disproportionate burden women and under-representedminorities face in team projects and the lack of resources
, given principal, interest rate, and pay period. 5. Perform project evaluation, including cost/benefit analysis. 6. Articulate principles of taxation and depreciation. 7. Perform capital budgeting, cost comparisons, and replacement analyses. 8. Solve problems at a level consistent with expectations of the engineering economics portion of the Fundamentals of Engineering examEngineering is a global and interdisciplinary field. Accreditation boards and engineeringeducation institutions across the board have called for a more well-rounded engineeringeducation, expressing the need for engineers that are better equipped to understand the impact ofthe global economy on engineering solutions, as well as the social and global
Paper ID #15411Connectivity at RIT - Developing & Delivering an Effective Professional De-velopment Workshop Series for Women Faculty in STEMProf. Elizabeth Dell, Rochester Institute of Technology (COE) Professor Dell is an associate professor in the Manufacturing & Mechanical Engineering Technology department at RIT. She serves as the Faculty Associate to the Provost for Women Faculty and is co-PI for RIT’s NSF ADVANCE project. Her research interests include: characterization of biodegradable plastics and environmental consideration in materials selection for production design, the impact of technology paired
Paper ID #16932Into the Light: Diffusing Ccontroversy and Increasing Transparency in theFaculty Salary Equity Study ProcessDr. Carol Elizabeth Marchetti, Rochester Institute of Technology (COE) Dr. Carol Marchetti is an Associate Professor of Statistics at Rochester Institute of Technology, where she teaches introductory and advanced undergraduate statistics courses and conducts research in statis- tics education, deaf education, and team work. She is a co-PI on RIT’s NSF ADVANCE IT project, Connect@RIT, and leads grant activities in the Human Resources strategic approach area.Prof. Margaret B. Bailey P.E., Rochester
-learning (CL) setting involves smaller groups (2-4 members) andruns non-permanent teams. Most CL tasks are structured to be completed within one class period,and can be handled by groups with 2-4 members. Smaller groups are both more efficient and moreeffective than larger groups in dealing with small-scaled tasks and projects. For a thoroughcomparative study on various types of learning in small groups, which include collaborativelearning, cooperative learning and problem-based learning, see Davidson and Major (2014) 17.We adopt a mixture of team-based and cooperative learning strategies to best suit our pedagogicalneeds. In particular, we adopt permanent team (a TBL feature) with 3-4 members each team (a CLfeature), and design experiments to
, 2016Changes in Undergraduate Engineering College Climate and Predictorsof Major Commitment: Results from Climate Studies in 2008 and 2015Abstract This paper presents results of two cross-sectional investigations of educational andinterpersonal climate in a college of engineering at a large mid-western university. In 2008 andin 2015 we deployed a survey ("Project to Assess Climate in Engineering”) to undergraduateengineering students. In each survey year, just over 1000 eligible students participated andresponded to items contributing to scales rating their professors, teaching assistants, collegeresources, confidence (self-efficacy) in engineering, student interactions, perceptions ofengineering, and commitment to an engineering major
-technical work and lose the opportunity to gaintechnical skills.9 Second, marginalization can occur when the contributions of underrepresentedteam members are overlooked by instructors or peers. Third, students might feel marginalizedwhen their ideas and input are only accepted when they are proposed or validated by a senior ordominant member from the team.10 Fourth, students from non-dominant groups may experiencemarginalization when projects are not relevant to their culture, community, or lived experiences.Several strategies were proposed to improve the experiences of marginalized students on teams,including changing personal beliefs by recognizing biases and how an individual’s experience isshaped by factors such as ethnicity, gender and socio
published in Journal of Public Administration Research and Theory, International Journal of Public Administration, and Energy Policy.Dr. Rachel R. Stoiko, West Virginia University Dr. Rachel Stoiko is a postdoctoral fellow at West Virginia University. She is interested in the intersections of gender, work, and family. Specifically, she works on projects related to career decision-making and development, institutional diversity and inclusivity, and student success in STEM. c American Society for Engineering Education, 2016 1 Dialogues toward Gender Equity: Engaging Engineering
education is the development of aseminar series that brings nationally and internationally recognized leaders in biomedicalresearch to them. From this notion, The New Frontiers in Biomedical Research SeminarSeries was created. Given that the NSF “ADVANCE projects support institutionaltransformation in STEM,” support for the seminars was granted from Louisiana Tech’sprogram and quickly garnered support from the University and community, increasing localexposure to biomedical research and increasing exposure of the University across thecountry.Specifically, the goals of the New Frontiers in Biomedical Research Seminar Series and thevision shared by those involved include: ● Introducing the Louisiana Tech University to visiting faculty through
obtain research experience and become confident and motivated to pursue their graduatestudy: Research activities: Combined with students’ interest and background, each WIECE student was associated with a specific research project and she performed research directly supervised by the author. One student worked on low-power logic circuit design and the other one worked on reliable SRAM schematics and layout optimization. The students attended weekly research meetings with author’s graduate students and attended research discussions and presentations. Professional development activities: the WIECE students were engaged in many aspects of professional development, including preparing
can be engaged as advocates and allies for equity in academic settings.Lauren Corrigan, Ohio State University Lauren Corrigan is a lecturer for the Engineering Education and Innovation Center at The Ohio State University. She earned both her Bachelor’s and Master’s in Civil and Environmental Engineering from Ohio State. She has two years of industry experience as an environmental engineering consultant. Her responsibilities included solid waste design, construction quality assurance, and computer aided design in support of various environmental projects. Lauren currently engages in teaching and curriculum develop- ment within the First-Year Engineering Program. Her research interests include the retention and
things.Methodological overview The methodological approach for this project came about via both theoretical (literature)and practical considerations. While the cultural construction literature tends to emphasize theoryand analysis, we tried to assemble a robust and consistent methodological approach to investigatecultural construction in a particular setting. In McDermott’s early writing at the time of his datacollection (1970’s) he aligned himself methodologically with three primary traditions:ethnography, ethnomethodology, and discourse/interaction analysis17,18,19. As an investigation ofculture, the work relies on ethnographic methods and approaches, such as the incorporation ofmultiple qualitative data streams, ethnographic field noting20, and one
, since the participants were at different stages of their lives, adolescence as opposed tocollege students, there was divergence in the focus and types of data collected. The study on thethree adolescent boys created a scenario centered on engineering design, for which funds ofknowledge was drawn upon, while the study on college students pulled from their existingengineering-related experiences to elicit funds of knowledge. However, both studies supportedcommunity-based design projects as valuable methods for drawing on students’ funds ofknowledge.Referring back to our research question—How is the funds of knowledge framework being utilizedto understand engineering concepts at the secondary and post-secondary level? —both examplescentered on the
Paper ID #16882Exploring Barriers in the Engineering Workplace: Hostile, Unsupportive,and Otherwise Chilly ConditionsRachel Yonemura , University of Washington Rachel Yonemura is currently working on her B.S. in Environmental Science and Resource Management at the University of Washington, Seattle, Washington. She has been working at the University as a Re- search Assistant under Dr. Denise Wilson on projects regarding the Engineering Workplace as well as E-waste Sustainability. Motivation for these projects stem from an interest in public discourse and the interrelationships that occur among people of different
Paper ID #15322First Generation Students Identification with and Feelings of Belongingnessin EngineeringHank Boone, University of Nevada, Reno Hank Boone is a Graduate Research Assistant and Masters Student at the University of Nevada, Reno. His research focuses on First Generation engineering college students’ engineering identity, belonging- ness, and how they perceive their college experience.He is also on a National Science Foundation project looking at non-normative engineering students and how they may have differing paths to success. His education includes a B.S. in Mechanical Engineering from University of Nevada
&M University Dr. Malini Natarajarathinam is an Associate professor with Department of Engineering Technology and Industrial Distribution. She teaches classes on strategic relationships for industrial distribution, distribu- tion information systems and new directions in Industrial Distribution. She is also the founding faculty and advisor for the Society of Women in Industrial Distribution (SWID). She works on many service learning projects with her students where they work with many local community agencies. c American Society for Engineering Education, 2016Women in Industrial Distribution: emerging opportunities and challenges for female college
Paper ID #17160Gaining Insights into the Effects of Culturally Responsive Curriculum onHistorically Underrepresented Students’ Desire for Computer ScienceMs. Omoju Miller, UC Berkeley Omoju Miller is the lead researcher on the ”Hiphopathy” project at UC Berkeley. She has an undergrad- uate degree in Computer Science (2001) and a Master’s degree in Electrical and Computer Engineering (2004) from the University of Memphis. She has over a decade of experience in the technology indus- try. She is currently a doctoral candidate at UC Berkeley in Computer Science Education. Omoju also served in a volunteer capacity as an advisor to
contributed to the development of the new ProLine Fusion Flight Control System and served as the project lead for two aircraft. She earned a bachelor’s degree in electrical engineering with a mathematics minor from Rose-Hulman Insti- tute of Technology in 2005. Her research interests include control systems, mechatronics, instructional laboratories, and experiential learning. c American Society for Engineering Education, 2016 Paper ID #15210Dr. Mary C. Verstraete, The University of Akron Mary Verstraete is an Associate Professor of Biomedical Engineering and the Associate Chair for the Undergraduate
scientist for the Center for Research on Education in Science, Mathematics, Engineering and Technology (CRESMET), and an evaluator for several NSF projects. His first research strand concentrates on the relationship be- tween educational policy and STEM education. His second research strand focuses on studying STEM classroom interactions and subsequent effects on student understanding. He is a co-developer of the Re- formed Teaching Observation Protocol (RTOP) and his work has been cited more than 1500 times and his publications have been published in multiple peer-reviewed journals such as Science Education and the Journal of Research in Science Teaching.Prof. Stephen J Krause, Arizona State University Stephen
Paper ID #15207Making Changes: Application of an NSF-ADVANCE PAID Grant at a Pre-dominantly Undergraduate Institution (PUI)Dr. Theresa M. Vitolo, Gannon University Theresa M. Vitolo is an Associate Professor in the Computer and Information Science Department, Gan- non University (Erie, PA). Teaching in systems-related fields since 1986, she joined the Computer and Information Science Department at Gannon University in 1999. In addition to teaching, she has worked as a systems analyst / programmer on a variety of systems development projects. Her academic background includes a B.S.E. in industrial engineering and a Ph.D. in
Paper ID #16129Engineering Students’ Self-Concept Differentiation: Investigation of Identity,Personality, and Authenticity with Implications for Program RetentionMs. Kylie Denise Stoup, James Madison University Kylie Stoup is a senior honors engineering student at James Madison University. Ms. Kylie Stoup grad- uates with a BS in Engineering in May 2016. She is in the second year of her 2-year-long engineering capstone project so far, involving the design and implementation of a greenway system in Harrisonburg. Her career interests include transportation infrastructure and city planning with a focus in social equity, as
study is certainly generalizable to studies of identity in engineering andmathematics and science education. The authors propose social entrepreneurship identity can befacilitated by educators through defining the social category group in which the individual willidentify, exposure to prototypical members and member characteristics, and active engagementin the social category particularly through group projects. Similarly, Mead formulated that“society shapes self shapes social behavior.”13 These social behaviors were later taken up byStryker and redefined as role choice behavior.16; 17 While Stryker explores external structures,Burke explored internal mechanisms aligned with more modern cognitive theories of identitydevelopment, namely the
Immediate Past-President of WEPAN, was PI on Tech’s NSF ADVANCE grant, a member of the mathematical and statistical so- cieties Joint Committee on Women, and advises a variety of women and girl-serving STEM projects and organizations. She is a past Vice President of ASEE and current Chair of the ASEE Long Range Planning Committee.Dr. Kim LaScola Needy P.E., University of Arkansas Kim LaScola Needy is Dean of the Graduate School and International Education at the University of Arkansas. Prior to this appointment she was Department Head and 21st Century Professor of Industrial Engineering at the University of Arkansas. She received her B.S. and M.S. degrees in Industrial Engi- neering from the University of Pittsburgh
) and projected (2016+)female enrollment in the orthopaedic residency class. “Baseline” represents model withparameter values reflecting our current program evaluation results. “Worst-Case” reflects worst-case assumptions for parameter values in terms of recruitment and retention in the orthopaedicspipeline. Considering the duration of our programming efforts (Figure 3), if we were to cease allprogramming immediately (2015), our past programming efforts would yield a peak diversity of27% female in 10 years (2025) before declining back to the 14% baseline within 12 years (2027).Similarly, if we were to continue programming only for 5 more years (until 2020), we wouldexpect an identical peak of 27% female within 10 years. This peak would
barriers: putting knowledge & skills/techniques to work – what works bestfor you? Part 3 –Supporting colleagues/the next generation of engineers (engineeringstewardship opportunities). In addition to peer coaching sessions (5 total) and journal entries (8totals), the final grade was also based on class participation and a final project (chosen by thestudent based on their interests related to a course topic). Class was structured so as to be mostlydiscussion-based with students reading articles and completing assignments before class to aid indiscussion led by the instructor or a content-expert guest facilitator. The course was taught withthe Four Frames12 as an overarching lens to view topics such as imposter syndrome, stereotypethreat
students to engage inSTEM careers.References1. Hartman, H., & Hartman, M. (2006). Leaving engineering: Lessons from Rowan University's college ofengineering. Journal of Engineering Education,95(1), 49-61.2. Bottomley, L. (2015). Assessing the Success of Programs for Women in Engineering. Proceedings of AmericanSociety for Engineering Education. Seattle.3. Felder, R. M., Felder, G. N., Mauney, M., Hamrin, C. E., & Dietz, E. J. (1995). A longitudinal study ofengineering student performance and retention. III. Gender differences in student performance and attitudes. Journalof Engineering Education, 84(2), 151-163.4. Goodman, I. F. (2002). Final Report of the Women's Experiences in College Engineering (WECE) Project. OnlineSubmission