and Signal Processing (ICASSP), Shanghai, China, 2016.[14] E. Cooney, S. Deal, A. McNeely, and H. Chaubey, “Multidisciplinary Undergraduate Research Project to Create Musical Effect Box,” in 2019 Conference for Industry and Education Collaboration, 2019 CIEC, New Orleans, LA, February 2019.[15] E. Bezzam, A. Hoffet, and P. Prandoni, "Teaching Practical DSP with Off-the-shelf Hardware and Free Software, "2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 7660-7664.[16] Y. Lin and T.D. Morton, “A Microcontroller-based DSP Laboratory Curriculum Paper,” in 2017 ASEE Annual Conference & Exposition, Columbus, Ohio, USA, June 2017.[17] K.D. Coonley and J. Miles
Paper ID #43628A Trilogy for Teaching and Learning Digital Electronics and MicroprocessorsProf. Wei-Jer (Peter) Han, Virginia Polytechnic Institute and State University ©American Society for Engineering Education, 2024 1. BackgroundAccording to the Moore’s law, which is the observation that the number of transistors in an integratedcircuit doubles about every two years. At present, one example of a GPU is the Nvidia H100, which has80 billion transistors on a single chip. At the same time, on August 9, 2022, the President of the UnitedStates signed the CHIPS and Science Act. All of the above mean the education of digital and
Paper ID #39606At-Home Drug Delivery Experiment: Teaching Mass Transfer Using FoodDyes, DIY SpectrometerDr. Gautom K. Das, University of Maryland Baltimore County Dr. Gautom Das is a Lecturer in the Chemical, Biochemical and Environmental Engineering at UMBC. Prior to joining UMBC, he was a Research Scientist and Lecturer in the Chemical and Biomolecular En- gineering at Rice University, and a Post-doctoral Scholar at the University of California, Davis. He earned his PhD in Chemical and Biomolecular Engineering from the Nanyang Technological University (NTU), Singapore. He has worked in laboratories in the US, Canada
complete instructional strategy that seeks to overcome issues of student conceptual understanding. ©American Society for Engineering Education, 2023 Mobile Phone-Based Contact and Non-Contact Vibration Sensing for Structural Dynamics Teaching LaboratoriesAbstractAcceleration-based dynamic sensing has been available for many years and numerous researchershave made effective use of the accelerometer available in mobile phones for measuring vibrationsat frequencies up to half the sampling rate of the phone. Manufacturers of mobile phones, tablets,and other devices are adding new sensors with each new model creating the potential to expandthe engineering laboratory from the confines of university
Ph.D. degrees in BME from the University of Michigan (Ann Arbor, MI). ©American Society for Engineering Education, 2024BYOE: Wacky-Waving-Non-Inflatable-Arm-Flailing-Tube-Man for Teaching Soft RoboticsAbstract. The emerging field of soft robotics has a wide range of applications in many differentfields. Due to its recent emergence and development, it is important to formally expose studentsinterested in STEM to this rapidly developing interdisciplinary field. We have addressed this issueby assembling the undergraduate engineering students to create a hands-on experience for college-level engineering students, allowing them to become familiar with a subset of soft-robotics-relevant
Paper ID #44552An Innovative Approach for Teaching Some Concepts of Digital Design LaboratoryCourse in 2+2 Program Using a Portable Laboratory InstrumentationDr. Neda Bazyar Shourabi, Pennsylvania State University, York Dr. Bazyar Shourabi is an Assistant Professor of Electrical Engineering at the Pennsylvania State University/York Campus. Her current research is focusing on Smart cities and engineering education.Dr. Oludare Adegbola Owolabi P.E., Morgan State University ©American Society for Engineering Education, 2024 An Innovative Approach for Teaching Some Concepts of Digital Design Laboratory
UniversityAbstractEngineering courses, particularly undergraduate engineering courses, include practical learningthrough laboratory experiments. Laboratory experiments help students understand theoreticalconcepts. They also teach them practical skills and soft skills.This paper presents the perception of students about laboratory experiments in various coursesrelated to electrical and computer engineering technology. The student perceptions were obtainedat the end of the semester via anonymous evaluations taken by the students for the laboratorycourses (courses with both theory and laboratory components).These courses were taught by thelead author over a period of six years at two different institutions. This paper presents statisticsbased on the students’ comments
of Engineering Brian Faulkner’s interests include teaching of modeling, engineering mathematics, textbook design, and engineering epistemology. ©American Society for Engineering Education, 2024 Student Epistemic Beliefs in Engineering LaboratoriesAbstractEngineering laboratories require different kinds of thinking than typical engineering theorycourses. Laboratories often require students to correctly recall theory and gain practicalknowledge of how to perform experiments related to that theory. The results of such experimentsare frequently inconclusive, which requires students to practice judgement in interpreting results.These factors make the engineering laboratory an epistemically rich
©American Society for Engineering Education, 2024 The Implementation and Assessment of the Effectiveness of Peer Teaching Instructional Technique in Lecture and Laboratory CoursesIntroductionPeer teaching is based on Bandura’s social learning theory, Piaget’s cognitive development, andVygotsky’s social constructivist learning theory [1-2], in which knowledge is sociallyconstructed by consensus among peers. The basic principle of peer teaching is that teachingsomething to others is an effective way to learn it [2-3]. Peer teaching involves students acting asboth teachers and learners, assisting each other in gaining knowledge and understanding throughinterdependence [4]. By teaching others, students
teach undergraduate engineering students how to preparea formal engineering laboratory report. Custom equipment for materials testing was designedand constructed in order to meet the first goal in an economically reasonable manner. Writing-intensive pedagogy was used to meet the second goal, with weekly individual writing assign-ments and one-on-one feedback meetings with every student to promote learning and writingskills improvement. This publication provides some details regarding how the development ofcustom materials testing laboratory equipment and workbenches shaped the laboratory experi-ence, and also outlines the writing-intensive course structure used to support the development ofstudents’ writing skills.1 Background1.1 The Need for
Paper ID #37969Toy Adaptation in a Laboratory Course: An Examination of LaboratoryInterests and Career MotivationsDr. Alyssa Catherine Taylor, University of California, San Diego Dr. Alyssa Taylor is an Associate Teaching Professor in the Shu Chien-Gene Lay Department of Bioengi- neering at the University of California San Diego. Dr. Taylor has twelve years of experience teaching across bioengineering laboratory, introductory, and capstone design classes. Through work such as toy adaptation described in this paper, Dr. Taylor seeks to prepare students to engage in Universal Design and consider accessibility in their
of Technol- ogy in 2006 and went on to receive a Ph.D. in chemical engineering from the University of Wisconsin- Madison in 2011.Dr. Chris Barr, University of Michigan Dr. Christopher Barr is the Instructional Laboratory Supervisor in the Chemical Engineering Department at University of Michigan. He obtained his Ph.D. at University of Toledo in 2013 and is a former Fellow in the N.S.F. GK-12 grant ”Graduate Teaching Fellows in STEM High School Education: An Environ- mental Science Learning Community at the Land-Lake Ecosystem Interface”. His main responsibilities are supervising and implementing improvements to the undergraduate labs. He also serves as secondary instructor for the CHE labs, the Departmental
on equity, inclusion in the classroom, and easing student transition to the workforce catering to STEM graduates.Marcos Jose Inonan Moran, University of Washington Marcos Inonan is a PhD student and research assistant in the Remote Hub Lab (RHLab) of the depart- ment of Electrical and Computer Engineering at the University of Washington in Seattle. His research is centered on developing remote laboratories with a lens of equitable access to engineering education, and driven by his commitment to promote diversity, equity and inclusion in STEM education. In addition to his research on remote laboratories, Marcos has expertise in digital communication theory, signal process- ing, radar technology, and firmware
Paper ID #38152Gamification Applied to a Microprocessor Systems Laboratory ActivityIng. Luis Felipe Zapata Rivera, Embry-Riddle Aeronautical University Luis Felipe Zapata-Rivera, Ph.D. is an assistant professor at Embry-Riddle Aeronautical University. His research interest are in Online Laboratories and Microprocessors. ©American Society for Engineering Education, 2023 Gamification Applied to a Microprocessor Systems Laboratory Activity Luis Felipe Zapata-Rivera, Ph.D. Assistant Professor, Department of Computer, Electrical and Software Engineering
Paper ID #41284Prioritizing Learning Outcomes for Chemical Engineering Laboratory Courses:Student PerspectivesDr. Chris Barr, University of Michigan Dr. Christopher Barr is the Instructional Laboratory Supervisor in the Chemical Engineering Department at University of Michigan. He obtained his Ph.D. at University of Toledo in 2013 and is a former Fellow in the N.S.F. GK-12 grant ”Graduate Teaching Fellows in STEM High School Education: An Environmental Science Learning Community at the Land-Lake Ecosystem Interface”. His main responsibilities are supervising and implementing improvements to the undergraduate labs. He also
Paper ID #38466Survey of the Entrepreneurial Mindset of Students in UndergraduateLaboratory CoursesAkshara SubramaniasivamDr. Rebecca Marie Reck, University of Illinois at Urbana - Champaign Rebecca M. Reck is a Teaching Associate Professor of Bioengineering at the University of Illinois Urbana- Champaign. Her research includes alternative grading, entrepreneurial mindset, instructional laboratories, and equity-focused teaching. She teaches biomedical instrumentation, signal processing, and control systems. She earned a Ph.D. in Systems Engineering from the University of Illinois Urbana-Champaign, an M.S. in Electrical
access.Therefore, it is essential to consider the compatibility of the lab with different types of internetand computers and to provide adequate feedback and support from the teaching staff. Theseresults underscore the importance of internet access in providing equitable access to RLs, with theneed to consider internet speed and compatibility with different types of computers. Additionally,to ensure equity in RLs for low-income students, possible solutions include providing freeresources such as internet access or developing lightweight or offline versions of RLs.DiscussionIn 2022, the research team of the Remote Hub Lab (RHLab) developed a Software Defined Radio(SDR) Remote Laboratory (RELIA) to be used in teaching signal processing and
class.” “This virtual lab was useful in helping me learn at my own pace. It gave me options to keep doing genome sequencing or if I was comfortable with it, I could progress to the next step.” “I think the overall concept of this lab was simply hard to grasp.” Laboratory Technique DevelopmentThis theme captures references to technique development within the virtual laboratory. Itencapsulates feelings of accomplishment with learned techniques and confidence in theability to replicate techniques in the VR labs. Learners highlighted the effectiveness of theVR labs in teaching about laboratory practices in a way that enhanced understanding beyondthe classroom sessions. They specifically mentioned techniques like cell
Paper ID #39116Increasing Student Motivation and Learning by Adopting theExperiment-Centric Pedagogy: A Case of Undergraduates in BiologyMs. Blessing Isoyiza ADEIKA, Morgan State University Blessing ADEIKA is a graduate student at Morgan State University currently studying Advanced Com- puting. She has interest in teaching student basic concepts by adopting an Experiment-centric approach to it. She also is currently working towards being a Data Scientist - AI/ML Expert and hope to use her skills to prefer solutions in the Medical, Financial, Technology and any other Sector she sees a need to be filled/catered for.Dr
, instructional laboratories, and equity-focused teaching. She teaches biomedical instrumentation, signal processing, and control systems. She earned a Ph.D. in Systems Engineering from the University of Illinois Urbana-Champaign, an M.S. in Electrical Engineering from Iowa State University, and a B.S. in Electrical Engineering from Rose-Hulman Institute of Technology. ©American Society for Engineering Education, 2024 Designing a Bioinstrumentation Lab for All LearnersIntroductionCombining the experiences of the instructor, teaching assistant, and students, we utilizedparticipatory action research and the application of entrepreneurial mindset to improve theexperience for all students in a
leveraging technology to enhance learning experiences and broaden access to engineering education. He has experience as a practicing engineer and has taught at the university and community-college levels. ©American Society for Engineering Education, 2024 Work-in Progress: Aligning an Engineering Hands-On Learning Program to College Strategy: Reducing Implementation Barriers to Support Faculty, Students, and Their SuccessAbstractThis Work in Progress addresses two of ELOS’ requested foci: pedagogy and best practices oflaboratory courses and hands-on laboratory instruction. We describe a redesign plan in theIntegrated Teaching and Learning Program (ITLP) at University of Colorado Boulder
produce high-quality results. These aspects are critical to ensure that the experiments arenot only effective but also practical and safe for students to conduct. Our research exploresinnovative methods to streamline experimental setups, enhance equipment functionality, andreinforce safety measures. The second question investigates the most effective learning objectivesand pedagogical approaches for integrating these desk-scale experiments into a blended learningenvironment within chemical engineering laboratories. Blended learning combines traditionalface-to-face instruction with online resources and activities. We aim to identify optimal learningobjectives and teaching methodologies that harness the potential of desk-scale experiments
approach to revolutionizing STEM education by seamlesslyintegrating artificial intelligence (AI) into the assessment of experiment-centric pedagogy. Ourresearch spans diverse disciplines, including biology, chemistry, physics, civil engineering,transportation engineering, mathematics, and computer science. We've transitioned fromtraditional teaching methods to an immersive approach, embedding experiments into corecurriculum modules to convey essential concepts effectively.Initially, this study employed the Laboratory Observation Protocol for Undergraduate STEM(LOPUS) and later transitioned to the Classroom Observation Protocol for Undergraduate STEM(COPUS), relying on manual observations. Dedicated spaces on sheets were marked at two-minute
Osawaru, and Onyebuchi Nneamaka Chisom, “A review on the innovative approaches to STEM education,” Int. J. Sci. Res. Arch., vol. 11, no. 1, pp. 244–252, Jan. 2024, doi: 10.30574/ijsra.2024.11.1.0026.[10] A. Ruby, “Hands-on Science and Student Achievement,” RAND. [Online]. Available: https://apps.dtic.mil/sti/tr/pdf/ADA393033.pdf[11] A. Hofstein, “The Role of Laboratory in Science Teaching and Learning The Weizmann Institute of Science , Department of Science Teaching THIRTY YEARS OF EXPERIENCE WITH,” Chem. Educ. Res. Pract., vol. 5, no. 3, pp. 247–264, 2004, doi: 10.1007/978-94-6300-749-8.[12] H. Lei, Y. Cui, and W. Zhou, “Relationships between student engagement and academic achievement: A meta
Paper ID #37880Experimental methods in tissue engineering: An integrated approach totheory, design, and analysisDr. David L Simpson, Wentworth Institute of Technology Dr. Simpson is the Provost Initiatives Coordinator for Inclusive Excellence and an Assistant Professor in the Biological Engineering Program. He joined Wentworth in 2018 from the University of California, Davis where he served as the Associate Director for the Veterinary Institute for Regenerative Cures and Director of the Regenerative Medicine Laboratory. At Wentworth, Dr. Simpson is working to promote inclusive excellence within the academic programs
concepts together with a pen and paper approach towards problem solving. Yet, the practicalapplication of these principles and concepts undergoes testing during the design thinking aspectof project or laboratory components within the courses. In addition to this many traditionaluniversity programs need to evolve their teaching methods to equip students with the innovative,creative, and integrated engineering-business skillsets that thrive in today's technology-drivenglobal economy. The entrepreneurial skillset is highly desirable by the companies todayespecially those employed in R&D7,8,9. Most of the labs which are integrated into the engineeringcourses have some common themes as their objectives engage students in activities related to
Paper ID #41093Project-Based Learning in a Multidisciplinary Two-Semester First-Year ExperienceDr. Mohammad Heshmati, Mississippi State University Dr. Mohammad Heshmati is an assistant professor in Swalm School of Chemical Engineering at Mississippi State University (MSU). His background is in Petroleum Engineering academia and industry settings. He is currently teaching Petroleum and Chemical Engineering courses at MSU and performs research in the fields of energy and dynamics of fluid flow in porous structuresDr. Bill B. Elmore, Mississippi State University Bill B. Elmore, Ph.D., P.E., is an Associate Professor and Director
Department at Texas A&M University in Fall 2015. Dr. Obeidat teaches differenDr. Ulan Dakeev, Sam Houston State University Dr. Ulan Dakeev is an Assistant Professor in the Engineering Technology Department at Sam Houston State University. His areas of research include Virtual & Augmented Reality, renewable energy (wind energy), quality in higher education, motivation, and engagement of employeesSyed Hasib Akhter Faruqui, Sam Houston State University Assistant Professor, Department of Engineering TechnologyJoe Nervis Jr, Sam Houston State University ©American Society for Engineering Education, 2024BYOE: SeaKatz 2.0 – Vision and Pneumatic Claw for Underwater Robot with
technology, biomedic engineering and remote laboratories (WebLabs).Rog´erio Cassares PiresAlessandra Dutra CoelhoFernando de Almeida MartinsMarcello Nitz ©American Society for Engineering Education, 2023 A Web Platform for Learning Control Systems Based On IoT Application Abstract—This work presents the development of an IoTapplication aimed for teaching process control, which allows II. REMOTE LAB DEVELOPMENTremote access by web. It is a level control system with a friendly,responsive and interactive interface that allows theimplementation of SISO type control systems (Single Input and The concept applied to
Paper ID #42464BYOE: Determination of Diffusivity via Time-lapse Imaging with a 3D-PrintedSpectrometer and a Raspberry PILisa Weeks, University of Maine Lisa Weeks is a senior lecturer of Biomedical Enginering in the Department of Chemical and Biomedical Engineering at the University of Maine since 2017. She teaches several of the core fundamental courses including hands on laboratory courses.Dr. Raymond Kennard, University of Maine Dr Raymond Kennard, after graduating with a B.S. in Chemistry from Ithaca College in 1999, returned to his home state of Maine to teach chemistry at Fryeburg Academy. After four years of teaching