. Client companies can leveragethe advanced capabilities of graduate students to address business challenges and have theopportunity to interact with and evaluate potential recruits.The successful integration of open-ended client projects into a graduate course poses challengesfor all parties involved. Assessment of students’ experiences with such a project can guide futuredecisions about the structure of projects that best meets the needs of students, clients, andfaculty. This paper presents the results of a study of students’ experiences with an open-endedclient project in a graduate course. The study participants are master’s, doctoral, and advancedundergraduate students enrolled in graduate courses at two different universities. The content
development, possibly because (once again) they are so focused on the technicalrequirements of an engineering education. Next, there are no standardized teaching methodologiesor techniques available to teach creativity within the engineering leadership curriculum, despite awealth of general creativity techniques focused on specific creative activities, such as ideageneration. And finally, there has been little acknowledgement or push from either the professionalinstitutions or industries of the role of creativity in leadership development for engineers; withoutthis external recognition of its importance, it will be more difficult to persuade academicinstitutions to invest in creativity instruction within their engineering curricula.Exploratory
professional identity formation in a PBL curriculum. 2016 IEEE Frontiers in Education Conference (FIE), 1–9. https://doi.org/10.1109/FIE.2016.7757387[23] Godwin, Potvin, G., Hazari, Z., & Lock, R. (2016). Identity, Critical Agency, and Engineering: An Affective Model for Predicting Engineering as a Career Choice: Identity, Critical Agency, and Engineering Careers. Journal of Engineering Education (Washington, D.C.), 105(2), 312–340. https://doi.org/10.1002/jee.20118[24] Knowles (1975). Self-Directed Learning. New York Associated Press.[25] Kerka, Sandra. (1994). Self-Directed Learning: Myths and Realities. Adult, Career, and Vocational Education.[26] Brandt, C. (2020). Instructing & Assessing 21st Century
Paper ID #25567Student Views on their Role in Society as an Engineer and Relevant EthicalIssuesDr. Angela R. Bielefeldt, University of Colorado, Boulder Angela Bielefeldt is a professor at the University of Colorado Boulder in the Department of Civil, Environ- mental, and Architectural Engineering (CEAE). She has served as the Associate Chair for Undergraduate Education in the CEAE Department, as well as the ABET assessment coordinator. Professor Bielefeldt was also the faculty director of the Sustainable By Design Residential Academic Program, a living- learning community where interdisciplinary students learn about and
Paper ID #14692Alternate Assessments to Support Formative Evaluations in an AsynchronousOnline Computer Engineering Graduate CourseMs. Ritushree Chatterjee, Iowa State University Ritushree Chatterjee is an Instructional Development Specialist working at Engineering-LAS Online Learning at Iowa State University. She did her undergraduate in Chemistry from Delhi University, In- dia and subsequently received her MS in Environmental Chemistry from Iowa State University. She received her second MS in Education with specialization in Curriculum and Instructional Technology and her Instructional Design certificate from Iowa
). Stagl et al. 15 summarizecurrent work in team leadership research and find that “the totality of research supports thisassertion; team leadership is critical to achieving both affective and behaviorally based teamoutcomes” (p. 172). Hill 16, supports this position in her team leadership chapter. In thedevelopment of their integrative team effectiveness framework, Salas et al.17 assert that leadershipplays a central role over the lifespan of the team, claiming that despite the complexities of teamleadership, “most would agree that team leaders and the leadership processes that they enact areessential to promoting team performance, adaptation, and effectiveness.”17 Additionally, Salas etal.17 assert that team leaders play an essential role due to
, transportation mobility for the transportation disadvantaged, and the development of planning and transit performance measures for access to opportunities, integrating sus- tainability into the engineering curriculum and creating an engineering sustainability minor. He has published several articles in the Transportation Research Record, other journals and conferences on these and other related topics. He is currently serving on the Transportation Research Board (TRB) Committee on Aircraft/Airport Compatibility and is a past member of the TRB Committees on Traffic Flow and Characteristics and Transportation Network Modeling. Stephen is also a member of the Ameri- can Society for Engineering Education (ASEE).Dr. Anne Nordberg
for engineering classes,” J. Eng. Educ., vol. 88, no. 1, pp. 53–57, 1999.[21] K. D. Dahm, S. Farrell, and R. P. Ramachandran, “Communication in the Engineering Curriculum: Learning to Write and Writing to Learn,” J. Eng. Educ. Transform., vol. 29, no. 2, pp. 1–8, 2015.[22] V. Svihla, “Advances in Design-Based Research in the Learning Sciences,” Front. Learn. Res., vol. 2, no. 4, pp. 35–45, 2014.[23] The Design-Based Research Collective, “Design-based research: An emerging paradigm for educational inquiry,” Educ. Res., vol. 32, no. 1, pp. 5–8, 2003.[24] J. R. Gomez and V. Svihla, “Building individual accountability through consensus,” Chem. Eng. Educ., vol. 53, no. 1, 2019.[25] J. R. Gomez, V. Svihla
experiments. Two newly revised lessonswere devoted to the topics of IAP sources, material balances, and controls. The lessons discussed Page 25.57.3how IAP poses significant issues to human health and how it is often underemphasized incomparison to ambient air pollution. Cooper and Alley (2011) states that many people spendmore than 20 hours per day on average in an indoor setting. Since the course is the only airpollution course offered in the our curriculum, the aim of this assignment was to broaden thestudents’ knowledge of other environmental engineering focus areas while supporting theprogram’s major concepts and themes, as well as the ABET
which each student outcome is being attained by the students and provide feedback to course instructors when appropriate. Rationale: This evaluation is heart of the assessment of student attainment of the SOs and Aerospace Engineering program criteria. These faculty members provide an independent assessment and evaluation of the degree of attainment of each SO and provide feedback for course improvement and curriculum change. This assessment and the resulting feedback to the faculty are essential for curriculum improvement.Work Review (WR) Assessment ProcessFor the Work Review assessment, the instructor is required to submit copies of the work of all ofthe students in the class on an assignment that targets the SO selected for the
Education, 2009Experiments with Computer Password Cracking and Shielding TechniquesAbstractInternet is dominating almost every aspect of our life. Internet applications are too manyin today’s business world. It is hard to imagine any office or home without a computernetwork. All kinds of money transactions are possible today because of the fast changesin computer technology. As a result, everyone with an online account can buy or sellanything over the Internet in a secured environment. Therefore, it is important to securethe computer with the easy username and an unbreakable password. This topic can beintegrated into anyone of the Computer Networks or Network Security courses forundergraduate students majoring in Computer
, an integrated approach examining structural, institutional, and actorcontextual factors with the view of gradual change, provides a powerful analyticalframework to fill such research gap. Based on an analytical review of policy documentsand scholarly research since the founding of People’s Republic of China (PRC) in 1949,this paper aims to investigate the structural and institutional factors that facilitate thepolicy shift to NEE in China’s HEE, and the intertwined relationships among thesefactors. The results of this research depicted the big picture of path evolution concerningthe policy shift to NEE in China’s HEE, thus contributing to the current gap in literatureregarding HEE in China as a socio-historical phenomenon.Keywords: New
engineers must be taught to becreative and flexible, and topics of renewable energy are an effective vehicle for developingmulti-disciplinary instruction using a variety of content disciplines and academic standards.Preparing engineering students with the skills and knowledge required to be tomorrow’ssuccessful engineers in the 21st century. Our educational strategy, embedded in our program’scurricula, is based on experiential learning (including also self-directed learning), on discoveringsolutions to design problems that are sustainable, and is focused on helping students to recognizethat they are part of a global community. Throughout our curricula we offer a relevant andvalidated curriculum that prepares students for post-graduation success
goals. For example,Gordon-MIT Engineering Leadership Program established an integrated curriculumprogram to develop leadership characteristics and skills among engineering studentsthrough a cooperation with MIT Sloan Business School [6]. Royal Academy ofEngineering in the U.K. involves engineering students in leadership training by settingup Engineering Leadership Standard/Advanced Award programs [7]. The EngineeringLeadership Development Minor (ELDM) at Penn State University requires engineeringstudents to complete a minor degree through taking related leadership classes andobtaining corresponding credits [8]. Engineering leadership has been increasingly considered as a key aspect forengineers’ training [9]. Multiple definitions can be
feedback is necessary to help students further develop these skills and ithas been suggested such feedback is best when situated in the context of authentic engineeringtasks 3. We hypothesize that in such a context, students are more likely to take up feedback onprofessional skills because these skills will be viewed as an integral part of what an engineerdoes. There are two parts to providing students with feedback on these skills: (a) we first musthave a firm understanding of what it means to have professional skills in engineering, and (b) weneed to know how to effectively provide students with feedback on these skills.The case study described in this paper focuses on discourse as students receive feedback whilethey engage in an industrially
evidence of understanding? 3. What learning experiences and teaching promote understanding, interest, and excellence?”[13]In other words, what should your criteria encompass? What would constitute evidence ofachieving those criteria? What does or could occur in the context of a course/curriculum thatwould demonstrate and promote achievement of those criteria?When writing or critiquing performance criteria, it may be helpful to consider different types ofcriteria. In Educative Assessment: designing assessments to inform and improve studentperformance[14], an excellent resource, Wiggins describes different types of criteria including“Impact of performance,” “Work quality and craftsmanship,” “Adequacy of methods andbehaviors,” “Validity of content
having an integrated lecture-labformat with continuous active participation of the students, immediate reinforcement of theengineering principles provided during lecture is offered. “Students learn best when they areactively involved in the process. Researchers report that, regardless of the subject matter, Page 12.1618.15students working in small groups tend to learn more of what is taught and retain it longer thanwhen the same content is presented in other instructional formats. Students who work incollaborative groups also appear more satisfied with their classes.”11Bibliography1. Vander Schaaf, R. and Klosky, J.L., “Show Me the Money!” Using
students), then integrate that advice into an action plan. • Students in a difficult circumstance are not always good at integrating and acting on advice. The UGO staff discovered that students often did not follow up with ODOS (which was always part of our advice), or if they did, subsequent follow-up with the UGO or ODOS was lacking. Students struggled to manage and act on the on-going conversations across the UGO and ODOS offices, especially when they are in a Page 26.1049.4 compromised state due to their circumstances. • ODOS was not near the engineering precinct. The ODOS offices are centrally located on
secondary science teachers the tools to design and implement learning experiences for their students that are effective and authentic to the discipline. Much of this work has been centered on model-based inquiry and the integration of scientific practices in a supportive and structured way. He has been funded by NSF and other agencies to conduct research on preservice teacher education, undergraduate engineering education, and community partnerships in secondary education. c American Society for Engineering Education, 2018 Examining interventions to increase classroom community and relevancy in an early career engineering courseAbstractThe current NSF-funded project was
Wesley, 1999.7. Gary Nutt, “Kernel Projects for Linux”, Addison Wesley, 2001.8. Eastman, E., “Exploring Linux as an Operating System in The CS Curriculum”, Journal of Computing Sciences in Colleges, April 2006.9. Bower, T., “Using Linux Kernel Modules for Operating Systems Class Projects”, American Society of Engineering Education Annual Conference Proceedings, June 2006.10. “RTAI: a Beginner's Guide”, Dipartimento di Ingegneria Aerospaziale - Politecnico di Milano, https://www.rtai.org/. Page 13.1350.11
College,2016. Report. [Online]. Available: https://www.hmc.edu [Accessed January 30, 2018].[14] “Program Educational Objectives,” 2018. [Online]. Available:http://www.hmc.edu/engineering/curriculum/program-educational-objectives/ [Accessed January30, 2018].[15] R. E. Sturm, S. N. Taylor, and L. E. Atwater, “Leader Self-Awareness: An Examination andImplications of Women's Under-Prediction,” Journal of Organizational Behavior, vol. 35, no. 5,pp. 657–677, Dec. 2013. [Online] Available: Wiley Online Library, www.wiley.com. [AccessedMar. 9, 2018].[16] J. E. Froyd, P. C. Wankat, and K. A. Smith, “Five Major Shifts in 100 Years of EngineeringEducation,” in Proceedings of the IEEE, vol. 100, no. Special Centennial Issue, pp. 1344-1360,May 2012.[17] L
coaster project allows students to investigate and creatively apply their analytic skillsto an ambiguous, real-world problem that they are highly motivated to explore. It both reinforcesthe underlying curriculum and also helps students develop intellectually, as the project isdesigned to teach that dynamics isn’t so much about looking for the “right answer” as it is aboutchoices and simplifications made in modeling reality.Although roller coaster design projects have been used as the basis for entire undergraduatecourses and also in STEM activities for pre-college students, the author is unaware of a similarproject being included as part of a first course in dynamics. For this project, students in teams ofthree were tasked with designing
as the thinning of the herd; students areconvinced to leave engineering programs because they cannot manage the academic workload.Attrition studies have concluded that most students that choose not to remain in engineering aredoing well academically and have GPAs similar to those students who stay in engineeringcourses [2,3]. These studies refer to outdated curriculum and a misunderstanding of howstudents prefer to learn [4, 5, 6].Project-based team learning is an essential practice used to modernize engineering curricula andhas been shown as a decisive factor in retention of students in STEM fields [1]. Working inteams brings along its own set of problems, however, studies by Oakley et al., indicate that thequality of learning is improved
Session 1661 Teaching Technical Communications in an Introductory Design Course through Interventions from the University’s Writing Center Colley Hodges, Cari-Sue Wilmot, Robert Askew, Richard Bannerot University of Houston Writing Center/Dept. of Mechanical EngineeringAbstractThis paper describes the continuing and evolving relationship between the Writing in theDiscipline Program in the University of Houston Writing Center and the Cullen College ofEngineering. This specific project is an intervention into a sophomore design course inmechanical engineering that took place for the first
Paper ID #8129The LowCost Vertical Axis Wind Turbine Project: An exercise in learningacross disciplinesDr. Narayanan M. Komerath, Georgia Institute of Technology This is a student-led paper guided by Professor Komerath. Dr. Komerath is a professor of aerospace engineering at Georgia Institute of Technology, and director of the Micro Renewable Energy Systems Laboratory. He has over 300 publications, over 120 of them peer-reviewed, plus 3 US Patents, and has guided 15 PhDs , 50+ MS and over 160 undergraduate research special problem projects. He is a former Chair of the Aerospace Division.Akshay Milind Pendharkar, Georgia
products at INTEVEP Petroleos de Venezuela (1983-1998). He is a founding member of Universidad Monteavila (Caracas, Venezuela) (1998—2018) and became the Chancellor (2005-2015), and the President of the Center for Higher Studies (2015-2018). After rejoining the University of Pittsburgh, he is teaching Pillar courses on Reactive Process Engineering, Process Control, and Process Design. In addition to technical courses, his service extends over engineering education, curriculum development, outreach programs, global awareness, sustainability, and diversity, equity and inclusion.David V.P. Sanchez (Assistant Professor) David V.P. Sanchez is an Associate Professor in the Swanson School of Engineering’s Civil & Environmental
programmingexperience, a variable which was explored in our study. The ability to increase performance ingroups across all prior programming experiences, especially groups with low prior programmingexperiences is an important step to increasing the graduation rate of underrepresented groupswithin computing majors.Online modality of teachingThe coronavirus pandemic that hit the globe in 2020, required all our first year engineeringcourses in our school to be offered online. Prior to the fall 2020 semester, none of our first yearcourses had online offerings, and none of the instructors teaching first year engineering courseshad any experience with online teaching, or incorporating active learning components into thecourse curriculum. This added another dimension
projects to design and build a […] circuit board and they give us a really tight budget. And so you can't afford all the fancy clips […] so you use hot glue or basically anything so that you can loop around the budget. And then […] lecturer […] takes one look and says 'I don't like this […] because it is not professional'.”In other transcripts, this approach to engineering was manifest in the curriculum structure orindividual assessment pieces and led to negative student perceptions of an instructor as a personwho “has all these little fiddly things he likes to stick to, this nice little protocol he likes.Everything's gotta fit into the box.” (Hasslam)During their time in industry, the students experienced a more flexible and pragmatic
Nature of Thermodynamics Learning ProblemsIt is critical to understand and to correctly frame problems associated with thermodynamicslearning and teaching. It is also essential to identify the root causes of these problems. Doingthis can form a foundation for eradicating these problems, and can guide curriculum and Page 23.1280.11textbook design. It also can inform and positively influence new instructional strategies.Close scrutiny of the literature outlined above reveals that in addition to conceptual difficulties,students have difficulty integrating concepts and principles and recognizing their relevance insolving problems.10,15,22,32,47,66
Paper ID #39098Data-driven Strategy for Maintaining an Effective Team Collaboration ina First-year Engineering CourseDr. Rui Li, New York University Tandon School of Engineering Dr. Rui Li earned his Master’s degree in Chemical Engineering in 2009 from Imperial College of London and his Ph.D in Electrical and Computer Engineering in 2020 from the University of Georgia, College of Engineering. He is currently an industrial assistant professor, who works in General Engineering program at New York University. He taught first-year engineering course as well as vertically integrated project. He has strong interests in