,” Commun. Teach., vol. 22, no. 4, pp. 116–129, Oct. 2008, doi: 10.1080/17404620802382680.[10] J. Gilmore, M. A. Maher, D. F. Feldon, and B. Timmerman, “Exploration of factors related to the development of science, technology, engineering, and mathematics graduate teaching assistants’ teaching orientations,” Stud. High. Educ., vol. 39, no. 10, pp. 1910–1928, Nov. 2014, doi: 10.1080/03075079.2013.806459.[11] M. Di Benedetti, S. Plumb, and S. B. M. Beck, “Effective use of peer teaching and self-reflection for the pedagogical training of graduate teaching assistants in engineering,” Eur. J. Eng. Educ., pp. 1–16, Apr. 2022, doi: 10.1080/03043797.2022.2054313.[12] J. Agarwal, G. Bucks, and T. J. Murphy, “A Literature
own.Groups of 4-5 students worked with a facilitator over 5-6 weeks. The course has anasynchronous and synchronous component to accommodate different time zones and schedules.A series of 5 video lectures guided students’ learning along the design path. The students weredirected to download a set of notes with blanks and encouraged to actively listen by filling in thenotes while watching the lecture. The length of the video lectures ranges from 8 - 32 minutes. Aset of 5 individual assignments (in the form of on-line quizzes) were created to support theasynchronous activities. After watching the video lecture, students are directed to complete aquiz. Responses to short-answer questions covered in the lecture and reflective exercises arecollected
issues which are not related to a team’s task [4]. Relationship conflict isusually expressed through tension, animosity, and annoyance between group members [5]. It cancause team members to spend more time focusing on off-task issues and make team membersless cooperative and receptive to others’ ideas [4]. While there is conflicting research regardingthe impact of other conflict types on performance, there is a broad consensus that relationshipconflict has an adverse effect [6]–[8]. Relationship conflict is considered to negatively affectperformance regardless of when it occurs in a team’s lifecycle [9]. Task conflict is the result of differences in opinion regarding the content of a group’swork [4]. This type of conflict reflects
developcategories of students for further inquiry. Students (n = 22) completed a systems engineeringdesign task, The Solar Urban Design, in which they worked to optimize solar gains of high-risebuildings in both winter and summer months within Energy3D as a part of their engineeringscience classroom. Energy3D is a Computer-Aided Design (CAD) rich design tool withconstruction and analysis capabilities. As students design in Energy3D, a log of all of theirdesign actions and results from analyses are logged. In addition, students took reflective noteswithin Energy3D during and after designing. We computed percentile ranks for the students’design performance for each of the required design elements (i.e. high rise 1 and high rise 2) foreach of the required
Our intent is to explore student reflection and outcomes of service-learning throughqualitative methodology. We utilized narrative inquiry through large descriptive data sets(Denzin & Lincoln, 2018). Qualitative methods allowed us to review student narratives andunderstand reflective processes (Chase, 2018). The goal of this study was to examine studentexperiences and their reflection of material to better communicate outcomes and benefits ofenrolling in a service-learning course.A WiSE approach: Examining how service-learning impacts first-year women in STEM 7 We instituted purposeful random sampling (Light, Singer, & Willett, 1990) to recruitcollege women in STEM, enrolled in a service-learning leadership
new modules we plan to develop shown in Figure 1. Therefore, it emerged as the mostappropriate model to use and became our primary framework.Multicultural awareness focuses on an individual’s understanding of their own social identities incomparison with the identities of members from other groups (Pope, Reynolds, & Mueller,2004). The competency of awareness encourages students to engage in critical reflection abouttheir own underlying assumptions to ensure that individuals with differing cultural perspectivesare not invalidated. Multicultural knowledge focuses on the pursuit of cultural knowledge andthe comprehension of new and or existing theories regarding race, class, and gender (Pope,Reynolds, & Mueller, 2004). This competency
courses. Followingthe first round of exams, students select the course in which they wish to improve theirperformance most significantly and then complete both an exam wrapper survey and learningstrategies survey to evaluate their preparatory behaviors, conceptual understanding, andperformance on the exam. Each student develops an action plan for improvement based on theirresults and begins implementation immediately. Following the second exam, students completean exam wrapper survey followed by a learning journal, in which students evaluate and reflect ontheir adherence to and effectiveness of their action plan and performance on the second exam.We propose that engagement with this exam wrapper activity in the context of the EntangledLearning
applied, transformative, purposive knowledge and growth.51, 52Because professionalization is also an important goal in engineering education, our listculminates with several goals that build from affective, ethical, and cognitive foundations to themore specific abilities we expect of graduating engineering students. Each student and program instructor will be able to 1. recognize in context, discuss, and demonstrate attitudes, behaviors and personal reflection about their rights and responsibilities to themselves, others, society, and the natural world 2. recognize in context, discuss, and demonstrate attitudes, behaviors and personal reflection about their habits and growth, as well as others’, and the implications of
depending on external, “teacher-centered” authority to a more self-assured ability to reconcile multiple perspectives, to tolerate ambiguity, and to reflect on the process itself (meta-cognition). Page 12.156.2 • Encourage students to develop the social skills needed to work with a team through the sharing of ideas, the ability to provide meaningful, constructive feedback, and the ability to accept peer critiques.Unfortunately, integrating effective peer-review sessions into a course requires much effort onthe part of the instructor. Karen Spear [13] enumerates several of the pitfalls associated withpeer-review of
that it should be contextualized for strongestretention of the cognitive skills17. One related study by Renaud and Murray26 found thatstudents performed better in a critical thinking assessment when they had the opportunityto practice critical thinking in a subject-specific context. Debate on this questioncontinues as exemplified by Ennis9 in his comprehensive review on contextualized vs.non-contextualized approaches.Critical thinking experts have proposed several definitions of critical thinking that aresimilar to the Delphi report, but reflect these differences in cognitive skills & disposition,and context-based vs. context free. Giancarlo and Facione13 emphasize that criticalthinkers use a core set of cognitive skills in a given context
. The team shares knowledge as it designs,builds, and tests the robot and as the team participates in the robot competition. Collectivecompetence acquired by the team in the project is demonstrated through the robot’s performanceat the competition. Collective efficacy reflects the shared beliefs of the students in their team’scapabilities to mobilize the motivation, cognitive resources, and practical activities needed tocope with challenging robotics assignments.The concept of collective efficacy was developed in studies of group performance in workorganizations4,5 as generalization of the concept of self-efficacy that reflects perceived (i.e. basedon real experience) beliefs of the individual in his/her own capabilities to perform the given
going to motivate students towant to learn about and engage in sociotechnical thinking in their engineering classes, then wemust frame it around issues that students already care about and/or questions they have. We mustpresent students with interesting problems and ask them to engage with the topics in a personalway–asking their own questions about the implications of technologies and applying theideas/questions to their life. Finally, “we have to give the students opportunities to respond inauthentic ways” such as in discussions, and reflections rather than exams. [2]Much of the curriculum for engineering education is singularly focused on technical fundamentalsand the design of systems. While these methods of study are undoubtedly useful to
findings suggested that recruiters first wanted to hearabout engineering students’ experiences within student organizations, engineering projects, andinternships or co-ops. However, it was not enough to name involvement in these experiences.Students who effectively demonstrate engineering leadership communicate what they learnedabout their leadership through their experiences, connect their experiences, interests, and skills tothe company, and confidently interact with the recruiter. Communication centered on self-awareness, where a student reflected on their personal leadership development based on variousexperiences. Recruiters wanted to see that students showed an understanding of leadership asbeing more than just a position as identified in
academic and social needs.2.2. Engagement-based learning2.2.1. Experiential learning. Experiential learning allows students to apply specific conceptslearned in the formal environment to the informal environment through opportunities such asinternships, apprenticeships, competitions, clubs, practica, and cooperative education [9].According to Kolb and Fry [10], experiential learning theory is a four-part cycle. 1. The learner has concrete experience with the content being taught. 2. The learner reflects on the experience by comparing it to prior experiences. 3. Based on experience and reflection, the learner develops new ideas about the content being taught. 4. The learner acts on the new ideas by experimenting in an
) are related to mathematics and equations; two items (Nos. 31 and 30) are related toabstract vs. concrete thinking; one item (No. 9) is about problem solving in different contexts;and one item (No. 20) deals with reflection and self-regulated learning. These research findingsas well as their implications and significance are discussed.IntroductionEngineering Dynamics is a foundational, sophomore-year, required course in manyundergraduate engineering programs, such as mechanical, aerospace, civil, and environmentalengineering. Built directly upon college-level physics mechanics and engineering staticscourses, Engineering Dynamics involves numerous fundamental physics mechanics concepts, forexample, Newton’s second law, the principle of work and
De-stressor/ Check-in 8 Finals Preparation, Tackling Academic Reflection on Challenges: Fixed Personal Health vs. Growth Mindset 9 Introduction to Mental Health/ Tackling Major Selection Stress Management Academic Challenges: Fixed vs. Growth
settings, the workshop provides studentswith an opportunity to learn about and practice giving and receiving feedback on peers’ projectplans, and chosen design methods and artifacts.In the remaining sections of this paper, we describe the contents of the workshop in detail andsummarize student feedback on each implementation. Further, we reflect on how the workshopcan be further developed to better meet its intended learning outcomes and suggest ways inwhich instructors can alter it to suit different student disciplines, academic levels and courseobjectives.Importance of FeedbackFeedback is reaction or opinion regarding a product, the performance of a task, etc., that is usedto support improvement or confirm success. The education literature
research: To what extent did the teacher’s NOEviews improve after exposure to a NGSS-aligned engineering design challenge course? Howsuccessful was the teacher in executing the engineering design process as taught through anengineering design challenge? We provide here a single case analysis for one teacher as a pilotstudy for future research. The paper provides a brief overview of our case study research inregards to data, methods, and preliminary results. Our data sources include pre/post NOEassessment, in-service teacher written reflections, and assignments.Curriculum design Learning goals and overview: The three-credit master’s level course was for in-servicescience teachers and focused on the EDP through an engineering design challenge
has been designed as an autoethnography, specifically a collaborativeautoethnography is defined as “engineering in the study of self, collectively” [9]. The intent ofcollaborative autoethnography is to engage in a process that reflects on the experiences of acollaborative effort, it is “a process because as the researcher studies and analyzes their ownexperiences, meaning is made influencing future experiences and reflections” [10]. Thecollaborative autoethnography approach merges together three distinct research methods andapproaches: (1) the reflexive study of self through autobiography, (2) a lens from the study ofculture through ethnography, and (3) the multiple perspectives from a group throughcollaboration [11]. This method was chosen
from one of the state colleges in our state. In order to create a shared understanding of the assetsthat transfer students bring to our institution, two faculty worked closely with two undergraduate studentsand one adviser. Data collection involved guided reflection writing by the two students and adviser ontopics as informed by the theoretical framework. These reflections bring to light some psychological,social, cognitive, and environmental resources that students in transition can draw on to maximizesuccess and minimize the transfer shock phenomenon.IntroductionTransfer students and their transitions to four-year institutions from two-year/community collegeshas been the focus of many investigations and programs. Research has shown that
Paper ID #14502Engineering Education: Moving toward a Contemplative Service ParadigmDr. George D. Catalano, Binghamton University Professor of Biomedical Engineering, Binghamton University Previously member of the faculty at U.S. Military Academy and Louisiana State University. Two time Fullbright Scholar – Italy and Germany. c American Society for Engineering Education, 2016 Ten Steps for Improving Critical and Reflective Thinking Skills in the Engineering Classroom: Moving towards a Contemplative Paradigm AbstractThe present work seeks to develop and implement
practices [38-41]. Despite the questioning of theapplication of learning style research and assessment tools in the classroom, learning styleassessment is still widely utilized in classroom settings in many different types of courses.Of the many models, there are three learning style models that are utilized in engineeringeducation [13, 16, 42, 43]. The first is Kolb’s Learning Style Model [23]. Learners are classifiedinto four types. Type 1 are concrete and reflective. They ask “why” and want to connect howcourse materials relate to their experience, interest, and future careers. Type 2 are abstract andreflective. They ask “what” and connect with information that is presented in an organized andlogical order. They will then think about the
the content and spirit of the BOK as much as possible.The BOK is a formal embodiment of what the U.S. Civil Engineering Profession values in itsstudents and practitioners.While ABET accreditation may be viewed by some as a compliance activity, at its heart is anassessment program to demonstrate continuous improvement in student learning. It is axiomaticthat students learn better when they know the expectations or goals of the particular learningactivity. In terms of performance, the program outcomes represent the faculty’s learningexpectations of the student. Since the department’s student learning outcomes (SLOs) areconstructed to reflect the ASCE BOK, they are also a representation of the profession’sexpectations of the students
. Off the six groups in the class, only two did a complete analysis of the water balloon drop incorporating both the physical device and video footage. While all groups tested their devices and redesigned them for second and third attempts, it was a little disappointing to see only two groups actually incorporate the video footage into their design recursion process. For instance, the group “Team Six” used the video footage from the first drop to see how the balloon actually broke. One member of Team Six, reflected on this process saying “the high speed camera was extremely useful in the process of designing the
inthe higher levels of learning, as it encourages students to reflect on their learning processes anddraw connections between course-work and “real-world” experiences. Specifically, ePortfoliosencourage novice engineers to consider their learning processes over time, drawing connectionsbetween coursework and their intended profession, as well as cultivating an online identity thatsupports their efforts to pursue a career in Engineering. The use of ePortfolios is one method forfostering integrative learning, focusing on the application of digital communication andassessment and awareness of self- competence. By training students to archive digital artifactsrelated to their learning, ePortfolios encourage student to draw connections between
. Through this progression they were able to master most if not all of the challengesand learning outcomes.In this paper we will look at some examples of sessions based on these learning blocks and wewill examine if the camp met the expectations of the campers based on pre- and post-activitiesfor particular learning blocks and the end of camp surveys. We will also look at their level ofengagement during activities as well as how formative assessment was built into the campthrough one of the self-reflection pieces that was part of the process.Materials and MethodsThe primary design strategies for our camp were based on the implementation of learning blocks,which were strongly focused on formative assessment strategies, Blooms Taxonomy
not trivial for a first-year student. (2) The design requirements can be structured to allow for many different designs or more highly constrained to force an outcome of more specific designs. (3) The cost of materials needed for the project is relatively low and all materials are easily obtained. The project could easily be changed by simply changing the allowable materials for construction.In both implementations, students were asked to write a short reflection on the skills acquiredafter completing the project. Reflections were categorized based on reflection themes todetermine common themes and trends. This assessment, while largely qualitative in nature,provides a snapshot of how well students internalize the
there must be a forward transmitted and backward reflected wave at adiscontinuity in the characteristic impedance in order to conserve energy. We exploit thisconsequence to calculate the attributes of the transmission line. This project can be conductedunder the pretext of a power company or communications company who want to locate faults intheir transmission lines.CharacteristicsStudents are asked to find: 1. velocity of propagation in the transmission line, 2. length of the transmission line, 3. attenuation coefficient of the transmission line, 4. impedance of an unknown termination.Initial ConditionsThis project is best presented a laboratory project. In other words, the only equipment need is anoscilloscope, function generator
grades. To determine whether studentsengaged in the kind of reflection and planning that was intended, the post-performancesubmissions from four of the nine course sections were collected and analyzed. Each of thesesections had nine teams of four, for a total of 144 students on 36 teams. All of these teams didwell enough that they did not have to submit analyses for the first two performance tests, andonly two teams were required to do an analysis for performance test four. This pattern wasconsistent with the rest of the course sections, as more than half of the teams fared poorly on thethird test, but passed the others, often with bonus points. Therefore, the analysis will focusexclusively on the responses to the third performance test
distinguishes and connects the current or actual level ofdevelopment of the learner and the next level attainable through the use of tools and facilitationby a capable adult. The authors believe that this area has to be considered carefully in thecurriculum development so that the students’ initial reluctance and hesitation are designed out.They decided to adopt a hybrid model adopting and mixing Instructivism and Constructivism.Instructivism in this context places emphasis on the educator in control of what is to be learnedand how it is to be learned, and the learner is the passive recipient of knowledge whileconstructivism emphasizes that people construct their own understanding and knowledge ofthe world through experiencing things and reflecting on