Paper ID #32133Best Overall 2019 PIC Paper Winner & PIC II - Assessment of ProjectBased Learning Courses Using Crowd SignalsMr. Georgios Georgalis, Purdue University at West Lafayette Georgios is currently a Ph.D. candidate in the School of Aeronautics and Astronautics at Purdue Univer- sity and has completed his undergraduate degree at the National Technical University of Athens (NTUA). His research concentrates on a new approach to project risk assessment that is human-centric and allows for prediction of upcoming failures, which gives practitioners the opportunity to prevent them.Dr. Karen Marais, Purdue University at
. There is a large increase from the second to third year, with smaller increases fromthe first to second and third to fourth years. While there are likely many reasons for that shift,there was a consistent trend in the associated qualitative feedback of students indicating that theirinterest increased as they started to see a clearer connection between what they were learning andthe kinds of work they were likely to encounter as practicing engineers.Figure 1: Senior Survey Reporting of Students’ Interest in Their CoursesIn addition to the potential benefits in terms of student engagement, there is also a correspondingbenefit for the department’s industry partners. The department’s current industry engagementefforts focus on design project
Engineering and Mathematics from Seattle University, a masters in Civil Engineering from Stanford University with an emphasis on structural engineering, and a PhD in Civil Engineering from the University of Colorado Boulder.Dr. Chris Swan, Tufts University Chris Swan is Dean of Undergraduate Education for the School of Engineering and an associate professor in the Civil and Environmental Engineering department at Tufts University. He has additional appoint- ments in the Jonathan M. Tisch College of Civic Life and the Center for Engineering Education and Outreach at Tufts. His current engineering education research interests focus on community engagement, service-based projects and examining whether an entrepreneurial
% Final Project 7.5% 7.5% Lab Final Exam 20.0% 25.0% Lecture Final Exam 30.0% 45.0% Table 1: Weightings for quiz and no-quiz options.Each of the ten quizzes had a similar format. The first page was a hardware-based or an assemblylanguage problem while the second page contained three short-answer questions. The quizzesmatched the format of both the lab reports and the two final examinations in that the first pagewas a design-type problem (similar to the lecture final) and the second page had short answerquestions (similar to the lab final). The quizzes were closed notes, but students could use aninstructor provided cheatsheet. Students were given
Instructional Effectiveness, she worked as the Education Project Manager for the NSF-funded JTFD Engineering faculty development program, as a high school math and science teacher, and as an Assistant Principal and Instructional & Curriculum Coach.Lydia Ross, Arizona State UniversityDr. Casey Jane Ankeny, Northwestern UniversityProf. Jay Oswald c American Society for Engineering Education, 2020 Paper ID #25428Effects of Alternative Course Design and Instructional Methods in the Engi-neering ClassroomDr. Lindy Hamilton Mayled, Arizona State University Lindy Hamilton Mayled is the Director of Instructional
auto-graded online homework. Eric has been a member of ASEE since 2001. He currently serves as chair of the Pacific Northwest Section and was the recipient of the 2008 Section Outstanding Teaching Award.Todd R. Haskell, Western Washington University Todd Haskell is a cognitive scientist interested in learning and the development of expertise, especially in STEM fields. He is currently Associate Professor of Psychology at Western Washington University. In previous projects Dr. Haskell has worked on understanding how chemistry novices and experts navi- gate between macroscopic, symbolic, and small particle representations, and how pre-service elementary teachers translate an understanding of energy concepts from
. Sorby and A. F. Wysocki, Introduction to 3D Spatial Visualization: An Active Approach. New York, NY: Thomson Delmar Learning, 2003.9. “Spatial Visualization Skills (SVS): Learn More,” ENGAGE Engineering. [Online]. Available: https://www.engageengineering.org/spatial/whyitworks/learnmore. [Accessed: Aug. 27, 2017].10. J. Segil, B. Myers, J. Sullivan, and D. Reamon, “Efficacy of various spatial visualization implementation approaches in a first-year engineering projects course,” in 2015 ASEE Annual Conference & Exposition, Seattle, Washington, USA, 2015.11. R. B. Guay, Purdue Spatial Visualization Test: Rotations. West Lafayette, In: Purdue Research Foundation, 1976.Maxine Fontaine Ph.D.Maxine Fontaine is a Teaching Assistant
test that fails," Nature, vol. 510, pp. 303-304, 6/12/2014 2014.[3] K. G. Stassun, S. Sturm, K. Holley-Bockelmann, A. Burger, D. J. Ernst, and D. Webb, "The Fisk-Vanderbilt Master’s-to-Ph.D. Bridge Program: Recognizing, enlisting, and cultivating unrealized or unrecognized potential in underrepresented minority students," American Journal of Physics, vol. 79, no. 4, pp. 374-379, 2011/04/01 2011.[4] R. Sowell, T. Zhang, B. N, and R. K, "PhD. Completion and Attrition: Analysis of Baseline Demographic Data from the Ph.D. Completion Project," Council of Graduate Schools2008.[5] (1/31/2019). National Science Foundation, National Center for Science and Engineering Statistics, Survey of Earned