University. She earned her B.S. in Software Engineering from Makerere University and her M.S. in Information Technology, with a focus on Software Engineering & Data Science, from Carnegie Mellon University. Her research focuses on reflective practices and outcomes in scaffolded computational modeling and simulation engineering projects, alongside the integration of data and ethical reasoning in engineering, and computing education within the African context. ©American Society for Engineering Education, 2024 Developing the Design Reasoning in Data Life-cycle Ethical Management FrameworkAbstractHuman-designed systems are increasingly leveraged by data-driven methods and
IDIsoftware. These scores correlate to produce reports detailing individual and/or group results thatprovide insight into characteristics within each phase. These results were then assessed usingMicrosoft Excel’s statistical toolset to analyze the changes across the IDC continuum of theoverall group, subgroups, and individuals. Changes (+/-) 7 on the IDI scoring are consideredstatistically significant.Qualitative Data CollectionQualitative data were collected from a modified Student Assessment of Learning Gains (SALG)Survey, developed using the SALG assessment tool [20] with reflection activities guided by [21],and course artifacts including student assignments, focus groups, individual interviews, classdiscussions, reflection activities, and related
experience. These are situations in which the designer(s) are most likely not to reflect anunderstanding or shared identity of end users’ needs and conditions. While the field ofengineering is diversifying, in the United States, nearly three-quarters of engineering positionsare still held by men, two-thirds of whom identify as white [12]. Until there is greaterrepresentation in the sciences and engineering fields, new pedagogical approaches are required toensure that engineering designs are inclusive and appropriate for the sociocultural contexts intowhich they are implemented.Many institutions develop DEI education as a separate, focused course to assist engineers inunderstanding place-based context. Social science courses may go some way in
. This course was designed to help students understand the motivation for theOpen Science movement and be most prepared to navigate these new standards, as they enter aresearch field. As a team of students and an instructor, we explored high-level concepts ofresearch linked to Open Science, and how modern tools facilitate reproducible research. Theobservations stated here are not considered comprehensive results from formal research, ratherthis paper provides reflections from a unique course that may inspire others to incorporate OpenScience practices into courses and research.Reproducibility along the research lifecycleThis course was centered around students understanding and creating reproducible research bydeveloping and assessing open
contribute to the higher emphasis on ethics in design engineering firms compared to construction companies? How might these differences impact decision-making processes? Consider organizational culture, project timelines, and stakeholder expectations. 2. Reflecting on Cesar's concerns about working under pressure in a construction company, how do you think time constraints and financial pressures can potentially compromise ethical decision-making in engineering projects? What strategies can engineers employ to maintain ethical standards while meeting tight deadlines? How can project managers and team leaders support this balance? 3. In what ways might Cesar's worries about prioritizing time and money over
modeling and design activities with authentic engineering contexts; the design and implementation of learning objective-based grading for transparent and fair assessment; and the integration of reflection to develop self-directed learners.Kyungki Kim, University of Nebraska, LincolnProf. Catherine Armwood-Gordon, Tennessee State University Dr. Catherine Armwood is Interim Chair and Associate Professor of Civil and Architectural Engineering at Tennessee State University. She is passionate in Engineering Education and Workforce Development of Underrepresented Minorities. She also conducts research in cementitious materials and structural resilience under extreme loading. ©American Society for
Recognition, and induction into the Honor Society of Phi Kappa Phi, placing her among the top 10% of Purdue Graduate students. Her academic journey reflects a commitment to advancing knowledge and contributing to technological innovation in XR control systems. Her professional aspirations include applying for an Assistant Professor position upon completing her Ph.D. This career trajectory aligns with her desire to leverage her accumulated experience and knowledge to mentor and guide emerging talents. A central component of her vision is inspiring and supporting aspiring scholars in pursuing academic and professional excellence, facilitating impactful change within our field.Dr. Farid Breidi, Purdue University, West
EJE's relevance in addressing sustainability and social equity. By promotinginclusive pedagogical approaches and continuous reflection, we aim to equip students with theskills to design ethical engineering solutions. Through collective efforts, we aspire to contributeto a more sustainable and equitable future, fostering understanding and action in EnvironmentalJustice Education.Key words: Environmental Justice, Equity, Engineering Education IntroductionThe purpose of this Work in Progress research paper and ECSJ-DEED joint technical session isto highlight the crucial role of Environmental Justice Education (EJE) in bridging the gapbetween educators and students, particularly in the context of engineering
responded to an IRB-approved follow-up survey about their learningexperiences. Reflective student feedback from both multidisciplinary trips indicated thatengineering students deepened their understanding of chosen topics in consideration of global,cultural, and societal factors, and that the non-engineering students enjoyed the visits more thanthey expected and overcame initial fears about engineering-related coursework, discoveringengineering practices in many aspects of their social lives. Overall, the students gave positivefeedback about the multidisciplinary trips and demonstrated achievement of the learningoutcomes. In the future, the authors plan to continue collaborations to further integrate the coursemodules and regularly evaluate the
, 2024Beyond the Algorithm: Empowering AI practitioners through liberal educationAbstractAs AI technology continues to transform society, there is a growing need for engineers and technologists to developinterdisciplinary skills to address complex, society-wide problems. However, there is a gap in understanding how toeffectively design and deliver inter-disciplinary education programs for AI-related training. This paper addressesthis gap by reporting on a successful summer school program that brought together specialists from around theworld to engage in deliberations on responsible AI, as part of a Summer School in Responsible AI led by Mila -Quebec Artificial Intelligence Institute. Through deep dive auto-ethnographic reflections from five
conceptualized from a longitudinal study of a scholar’s program atthree different universities in the state of Nebraska. A department faculty member was part of amulti-year institutional professional learning community (PLC) that explored the scale-up andscale-out of this model. Based on their experience from the PLC, this model was used in thedevelopment of the department’s overall student services ethos and in the specificimplementation of two initiatives: 1) hybrid advising/mentoring model, and 2) peer-mentoringprogram. This practice paper provides an overview of the ecological validation model andpresents our approach to implementing these initiatives. We also reflect on challenges and futureopportunities including long-term sustainability and
one hour twice weekly summer school programfor students who had recently finished 3rd grade using this curriculum.This reflection examines the experiences of curriculum designers and instructors during the firstuse of the materials to understand the efficacy of the curriculum to meet key learning objectivesrelated to AMR. This case study reflection also examines the quality of student engagement andease of use to instructors for interactive components developed in this curriculum, like animatedvideos and hands-on activities. All the data and insights presented in this paper are based on theperspectives and feedback provided by iAMResponsible™ team members who developed thecurriculum, summer program instructor, student teaching assistants, and
collaborative skills,and solving complex problems. Many of these works present effective techniques to augment the learningprocess, whereas our study places emphasis on methods to improve students’ ability to synthesize andcommunicate their learned knowledge to a broad audience.This study explores the potential of Gala – a new, open-source, case-based learning platform – to helpstudents meaningfully package and present their learnings from project, problem, and service-basedlearning. Gala’s digital, open-access structure and focus on sustainability education attracts creators withdiverse expertise, intent, and backgrounds [8,9]. The variety of creator’s interests is reflected in Figure 1,which highlights the spread of case studies across the globe. The
Activity: students interview in written communications to industry professionals in set up the meeting. During person (or via meetings they acquire teleconference) who are information, images and take young professionals and notes. Using material from seasoned professionals their interactions, they prepare individual writing reflections of their experience and
], [34]), etc.Given the variety of terms and approaches, we first sought to define our goals for equity-centeredengineering curriculum and instruction. To challenge conceptualizations of engineering thatreproduce and maintain inequitable processes and outcomes, educators must interrogate whatcounts as engineering and support such reflection in their students. Educators must teach thatengineering is sociotechnical in nature [7]; authentic engineering problem-solving is contextual[13], [23]; and engineering is part of justice movements [1], [20]. Such teaching requires bothequitable pedagogy – to model equitable practices and create environments in which students canlearn to be equity-minded engineers – as well as equity-centered content – in
. Participantsfound it difficult to extend their goals because graduation was so far away and there were fewopportunities for reflection within their programs. Implications from this work will help students,faculty, and administrators begin conversations about student goals and encourage students toengage in reflective practices to determine the value of the doctoral degree for them along withwhether their courses and research align with their goals.INTRODUCTION & LITERATURE REVIEW Attrition is high in engineering graduate programs. The 10-year completion rate forengineering PhDs is only 60% depending on the discipline [1], with attrition rates at approximately35% for women, 24% for men, and as high as 57% for African American engineering
documents your design selection process, explains your manufacturing process, and describes the testing and iteration steps you took. 3. Final Design and See Appendix ReportA template is provided to the students for the final report, which requires students to documentthe different steps of the EDP. Students use the previous milestones and comments from theinstructors to complete their final document. Additionally, students are required to include alltheir team meeting minutes as well as personal reflections about the project and theircontributions. Bonus points are awarded for the top three performing teams during the tower-platform stability testing. The requirements of the final report can
diversity and inclusioninitiatives. The course culminates with the project competition. Students are also required towrite reflections and a roadmap to their careers. We hypothesize that the multidimensionalapproach to the course will develop belonging to the profession and STEM Efficacy. STEMEfficacy is the students' beliefs about their abilities to perform STEM learning activities [22-23].II.2. Engineering Speaker Series, Reflection Paper, and Career RoadmapEvery semester, a minimum of 10 professional speakers are invited to speak about the threedimensions through 1. their specific field, 2. the skills to be successful in the field, 3. their story and insights on how to succeed in college, as an engineer, and as a professional for
multipleevidences that support each proposed interpretation and use. The concept of reliability reflectshow consistently the instrument measures what it is designed to measure—in other words, howmuch the scores are consistent [1], [7]. Finally, fairness is about considering and avoiding thedifferent ways the instrument might be biased against or in favor of certain groups, both in termsof how they are scored and how the scores might impact groups differently [8]. These threeconcepts are important when considering the development of an instrument because evidences ofthese concepts can ensure that the information one gets from the instrument are relevant for awide population and that it actually reflects what it is intending to measure [5].With the rise of
engineering andwhat motivated them towards developing equity-minded educational practices for theirundergraduate students. The five faculty participants provided written reflections on how theirlife and professional experiences have informed said practices. From a social constructionismparadigm and using narrative inquiry methodology, a combination of in vivo and descriptivecoding (first cycle) followed by emergent and focused coding (second cycle) were used by thefirst three authors to generate a codebook. The theoretical frameworks of Community CulturalWealth, LatCrit, and Hidden Curriculum guided the data analysis and interpretation process.Two layers of member-checking were conducted amongst the last two authors as well asadditional Latiné/x
to reorder nature. This reordering of theworld is consequential, driven by imperfect human ambitions and choices subject to subjectiveaesthetic, ethical, and moral scrutiny of their impacts. It is of infinite variability based on culture,discipline, resources, environment, reasoning, imagination, and reflection, but rooted in humanniche for rapid adaptability. Human design began with a cognitive ability tied to visual neuralpathways and ability to think visually—visual thinking and the hand to abstract and manipulatematter for practical applications [26]. This functionality came through the power of observation,curiosity, imagination, abstraction, and goal-directed deliberation. It also came withunderstanding form and aesthetics and
Paper ID #41746A Tool for Gaining Insight into Students’ Self-Directed Learning SkillsMiss Toluwalase Opanuga, University of Nebraska, Lincoln Toluwalase Opanuga is a second-year Ph.D. student specializing in Engineering Education Research and a research assistant at the University of Nebraska-Lincoln. She holds a Master of Science in Industrial Engineering from Eastern Mediterranean University, Turkey, and a Bachelor of Science degree in Electrical Engineering from the University of Ibadan, Nigeria. Her research areas include self-reflection, self-directed learning, faculty development, global competence, and
coding scheme adapted from a related study by Song, Guoand Thuente [1], focusing on density, organization, and content of the study sheet. The codingcriteria are explained below and summarized in Table 1.Density: • A study sheet is considered dense when both sides of the paper are covered, leaving minimal vacant space. This indicates the volume of information on the paper and the effort invested in crafting the sheet. • Very dense sheets may suggest inadequate preparation for the exam, potentially reflecting a last-minute effort to compile material for use during the test. Dense sheets may not necessarily indicate a strong understanding of the course concepts. • Very sparse sheets may suggest a lack of time
reflected on why understanding redlining andother social justice issues are important to their future careers as civil engineers. This paper describeswhat was done in both classes and reflections from both students and instructors.IntroductionService-learning and community-based learning are proven pedagogical approaches used across multipledisciplines and educational levels to bridge teaching and community engagement (Billig, 2000; Kuh,2008). Over the course of decades, research demonstrates the benefits of service-learning (SL) to studentlearning (Warren, 2012), satisfaction (Drinkard & Tontodonato, 2019), engagement, and retention(Bringle, Hatcher & Muthiah, 2010). This paper describes how information on redlining wasincorporated into a
engineering education, CBE provides a transition from universityto industry. Many parallels exist between CBE and industry practices, in particular thosesurrounding design-based concepts. In industry, new-product development (NPD) requiresattention to detail at the individual project, business, and systems level to create a successfulproduct launch [2], whereas university engineering design courses tend to focus on the individualproject level. Cooper’s [2] NPD success drivers often reflect the type of skills that are a focus inCBE. For individual new-product projects, overlapping concepts include voice-of-the-customer,pre-work, definition, and iterations. Building in the voice-of-the-customer may involve marketresearch for businesses, whereas
construct definitions that reflect more than just our own perspectives on makerspaces. Thepurpose of these definitions is to guide the creation of survey items and interpret the results ofthese items as they coalesce into factors.The second phase of our project, Item Generation and Judging, is focused on writing andrevising survey items with different sources of feedback. First, taking the construct definitionsgenerated in the previous phase, we will create a set of survey items associated with each of theconstructs we wish to measure. Second, we will ask experts in makerspaces and experts ininstrument development to review our preliminary items in terms of their alignment with theconstructs and their writing. With the expert feedback in hand, we
Engineering Education at Purdue University. He keeps a balanced life connecting with nature, staying mentally, physically, spiritually, and socially active, constantly learning and reflecting, and challenging himself to improve. He is interested in learning/teaching collectively, engineering philosophy, and social and environmental justice. His purpose is to help people freely and fully develop in a sustainable world.Mr. Leonardo Pollettini Marcos, Purdue University Leonardo Pollettini Marcos is a 3rd-year PhD student at Purdue University’s engineering education program. He completed a bachelor’s and a master’s degree in Materials Engineering at the Federal University of S˜ao Carlos, Brazil. His research interests are in
manufacturing, visits to local companies usingsemiconductors in their production lines, tours of local higher education fabrication andexperimental lab facilities, and designing and prototyping various microelectronic systems. Theprogram and participant experience were evaluated based on understanding students’ change intheir sense of belonging and self-efficacy, career aspiration, and knowledge and skills associatedwith the semiconductor ecosystem. Data collection involved pre-post survey results, students’daily evaluations of the program activities and reflections, and focus group responses.The analysis, employing inductive coding of responses and related pairs analysis on pre- andpost-survey sections, revealed positive outcomes. These findings
. ©American Society for Engineering Education, 2024WIP: Using ePortfolios to Enable Life Project MentoringAmong First-Year Engineering StudentsConstanza Miranda 1,2, Mareham Yacoub 1, Rachel McClam 21 Johns Hopkins University, Whiting School of Engineering.2 Johns Hopkins University, Biomedical Engineering Department.2 Johns Hopkins University, School of Education.AbstractThis is a work in progress. ePortfolios are portfolios in electronic form. These are known topromote folio thinking, a reflective technique that allows students to describe their learningexperiences through a purposeful gathering of objects. This systematic gathering of proof oflearning and professional development could also empower students as they build a digitalpresence
processing between meetings, (2) group discussion and processing of ourexperiences at our bi-weekly meetings, and (3) at the conclusion of the term, an iterative processof individual and collaborative review of our reflections and notes to identify and thematicallyorganize key observations and results.Our Stories (In Brief)Each of us came to Purdue University in the Fall of 2023 from private, teaching-intensiveinstitutions with enrollments between 2,500 and 3,500 students. We differed in our depth ofteaching and industry experience, which is summarized in Table 1.Table 1. Prior Teaching and Industry Experience of the Authors Author Teaching Experience Industry Experience Steve Assistant Professor (NTT