., Orr, M. K., and Ohland, M. W. (2014). The Accidental Engineer. American Society for Engineering Education (under review). Indianapolis, IN. Page 24.32.6Impact on engineering educationProviding the taxonomy developed by the research teach has the potential for impact on bothresearch and practice. Xingyu Chen’s related dissertation research will expand knowledge of thefield.The project team intends to collaborate with Ken Reid at Ohio Northern University on a proposalto study the impact of specific introductory course elements on retention in engineering and inmajor. Dr. Reid and his team have developed a classification scheme for the
develop an instruction and assessment plan, and define the learning environment and context for their course(s). 2. Contains a repository of current best pedagogical and assessment practices, and based on selections the user makes when defining the learning objectives of the course, the system will present options for assessment and instruction that align with the type/level of student learning desired. 3. Generates documentation of course design. In the same manner that an architect’s blue- print articulates the plans for a structure, the IMODTM course design documentation will present an unequivocal statement as to what to expect when the course is delivered. 4. Provides just-in-time help to the user
of Texas at Austin. His technical speciality is structural engineering with a focus on struc- tural concrete. He has taught a variety of structural engineering courses, freshman level introduction to engineering courses, and infrastructure education courses. His research interests include curriculum re- form, enhanced teaching and advising practices, improving retention of undergraduate students, and using learning analytics to improve institutional practice.Dr. Matthew W Roberts, University of Wisconsin, Platteville Matthew Roberts has been teaching at UW-Platteville since 2002. He is originally from Denver, Colorado and attended Brigham Young University for his B.S. in Civil Engineering. He then spent four
current re- search focuses on identifying impacts of different factors on ideation of designers and engineers (funded by NSF), developing instructional materials for 77 cards (funded by NSF), and designing innovation workshops for students without design or engineering background and teaching them design thinking methodologies (funded by Procter and Gamble). She received her PhD degree in Design Science in 2010 from University of Michigan. She is also a faculty in Human Computer Interaction Graduate Program and a research faculty in Center for e-Design.Dr. Kathryn Jablokow, Pennsylvania State University Dr. Kathryn Jablokow is an Associate Professor of Mechanical Engineering and Engineering Design at Penn State
VT Engineering Com- munication Center (VTECC). She received her PhD in Linguistics from the University of Chicago and a B.A. in English from the University of Georgia. Her research interests include interdisciplinary collabora- tion, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include interdisciplinary pedagogy for pervasive computing design; writing across the curriculum in Statics courses; as well as a CAREER award to explore the use of e- portfolios to promote professional identity and reflective practice. Her teaching emphasizes the roles of engineers as communicators and educators, the foundations and evolution of the
at Syracuse University from 2006 to 2007. He is currently working as an assistant professor in Electrical Engineering and Computer Science department at Texas A&M University at Kingsville. His current research interests include adaptive array processing, signal processing, and smart antennas.Prof. Reza Nekovei, Texas A&M University, Kingsville Dr. Reza Nekovei is a Professor of Electrical Engineering and Computer Science at Texas A&M University- Kingsville. He has many years of experience in developing graduate and undergraduate programs. Prof. Nekovei is currently co-PI for two NSF projects related in teaching by design research and development, one in Nanotechnology (NSF-NUE) and another in Robotics
and Engineering Design at Penn State University. A graduate of Ohio State University (Ph.D., Electrical Engineering), Dr. Jablokow’s teaching and research interests include problem solving, invention, and creativity in science and engineer- ing, as well as robotics and computational dynamics. In addition to her membership in ASEE, she is a Senior Member of IEEE and a Fellow of ASME. Dr. Jablokow is the architect of a unique 4-course mod- ule focused on creativity and problem solving leadership and is currently developing a new methodology for cognition-based design. She is one of three instructors for Penn State’s Massive Open Online Course (MOOC) on Creativity, Innovation, and Change, and she is the founding
Page 24.1022.1 c American Society for Engineering Education, 2014 Promoting the Adoption of Innovative Teaching Practices by Transportation Engineering Faculty in a WorkshopIntroductionThe National Transportation Curriculum Project (NTCP), a consortium of researchers fromfifteen colleges and universities, is concerned with the development, dissemination, andwidespread adoption of curricular materials and best practices in transportation engineeringeducation [1]. In 2012, the NTCP hosted a two-day Transportation Engineering EducationWorkshop (TEEW) to facilitate the collaborative development and adoption of active learningand conceptual-assessment exercises for the introduction to
(Industrial Innovation and Partnerships). In 2006 and 2007, he won the Most Cited Journal Paper award from Computer-Aided Design and the Research Excellence award in the College of Engineering at Purdue University. In 2009, he won the Outstanding Commercialization award from Purdue University and the ASME Best Paper Award from technical committees twice at the IDETC. In 2012 his labs paper won the all conference best paper award from ASME-CIE for ”Handy Potter”. Page 24.683.1 c American Society for Engineering Education, 2014 IDEA-Pen: Interactive Design and Analysis through a Pen-based
-tions create a pressing need for graduates capable of systems thinking2 and understanding themanufacturing and product development cycle, from making informed cost- and quality-baseddesign decisions, analyzing these designs, to producing and ultimately testing these designs toensure conformance with specifications.Our educational project aims to harness the recent proliferation of low-cost, multi-axis computer-numerical-control machines to address these evolving market needs within the constraints of en-gineering design education. The lower-cost and lower-accuracy hobbyist CNC machines havelargely benefited from the support of a growing hobbyist and open-source community eager todevelop and capitalize on advanced machining and prototyping
2015.1,2 Research and development in nanotechnology is likely to changecompletely the design, analysis, and manufacturing for a wide range of engineering products.Nanotechnology, however, is still mostly a topic for graduate schools whereas undergraduateprograms that focus on nanotechnology remain sporadic.3 Our NSF-NUE award will builda multidisciplinary, cross-campus educational program that integrates nanotechnology to theundergraduate curricula in science and engineering. Our educational program in nanotechnologywill also reach out to high school (K9-K12) and graduate students.In the development of an educational program for introducing nanotechnology to undergraduate(UG) students majoring in STEM at the New Jersey Institute of Technology
see it in different courses, and helps students connect the various concepts they learn indifferent courses. It is in this capacity, that PLP facilitates the hardware-software connectionwhen it is used to teach hardware design, assembly programming, compilers, and operatingsystems.Figure 3: PLP’s New Homepage. This organization better reflects the different roles that PLP isexpected to play: an education tool for faculty and students, an engineering education research projectwith some unique methods of qualitative analysis, and a development environment for hobbyists andtinkerers. Page 24.87.5Communities of Practice: In PLP, a class is set
Paper ID #8492Analysis of the Impact of Participation in a Summer Bridge Program onMathematics Course Performance by First-Semester Engineering StudentsDr. John R. Reisel, University of Wisconsin, Milwaukee Dr. John R. Reisel is an associate professor of Mechanical Engineering at the University of Wisconsin- Milwaukee (UWM). He serves as associate director of the Center for Alternative Fuels, and co-director of the Energy Conversion Efficiency Lab. In addition to research into engineering education, his research efforts focus on combustion and energy utilization. Dr. Reisel was a 2005 recipient of the UWM Dis- tinguished
directs the KSU Medical Component Design Laboratory, a facility partially funded by the National Science Foundation that provides resources for the research and development of distributed medical monitoring technologies and learning tools that support biomedical contexts. His research focuses on (1) plug-and-play, point-of- care medical monitoring systems that utilize interoperability standards, (2) wearable sensors and signal processing techniques for the determination of human and animal physiological status, and (3) educational tools and techniques that maximize learning and student interest. Dr. Warren is a member of the American Society for Engineering Education and the Institute of Electrical and Electronics
decreasing rampup time. Proprietary research. Consulting services for universities providing information about the job readiness of their engineering graduates. Consulting services for industry providing assistance in improving their onboarding practices. Grant monies investigating new areas of interest.This business plan describes the initial set up and operation of the proposed coalition, whichwould occur over a time frame of 1 – 1.5 years.1 The authors are actively seeking other colleges of engineering who want to collaborate with Boise State University to set up the proposed coalition
identity construction. Her current projects include a cross-national collaboration focused on supporting productive disciplinary engagement in complex STEM contexts (including engineering and environmental science): the Science Across Virtual Institutes (SAVI) collaboration with OSU and UTU reported here, sponsored by NSF, the Academy of Finland, and TEKES. Dr. Nolen is a member of the Knowledge-in-Action research group in the UW LIFE Center. In collab- oration with teachers and districts, the KIA group is developing engaging, rigorous, project-based AP courses for high school students using a design-based implementation research framework.Dr. Debra M. Gilbuena, Oregon State University Debra Gilbuena is a postdoctoral
by instructors to meet their preferredobjectives. Therefore, while they may be prerequisites to second-year courses, first-yearengineering programs are not necessarily integrated into an engineering curriculum. Further,since they are often designed with little consideration for best practices in introductory coursedesign, overall outcomes and content vary widely. This leads to the issue of course developers“reinventing the wheel,” considering successful models are not adequately disseminated. Theproblem is further exacerbated by a lack of definition for first year models. Despite a developerknowing what they want in a course, he or she may not be able to find a course with similaroutcomes with nothing more than "first year engineering" as a
understanding of materials concepts. Dr. Chan also teaches an advanced course on electrochemical energy conversion and storage and leads a group of undergraduate, graduate, and postdoctoral researchers focused on the design and characterization of novel materials for batteries and photoelectrochemical applications. c American Society for Engineering Education, 2014 JTF Web-Enabled Faculty and Student Tools for More Effective Teaching and Learning through Two-Way, Frequent Formative FeedbackAbstractJTF (Just-in-Time-Teaching with Interactive Frequent Formative Feedback) is an NSF TUESType 2 project with an overall goal of implementing web-enabled tools and resources thatfacilitate the strategies, practices
impacts of different factors on ideation of designers and engineers, developing instructional materials for 77 cards, and designing innovation workshops for students without design or engineering background and teaching them design thinking methodologies. She received her PhD degree in Design Science in 2010 from University of Michigan. She is also a faculty in Human Computer Interaction Graduate Program and a research faculty in Center for e-Design.Dr. Shanna R. Daly, University of Michigan Shanna Daly is an Assistant Research Scientist and Adjunct Assistant Professor in the College of Engi- neering at the University of Michigan. She has a B.E. in Chemical Engineering from the University of Dayton and a Ph.D. in
Paper ID #8733On Developing a Software Defined Radio Laboratory Course for Undergrad-uate Wireless Engineering CurriculumProf. Shiwen Mao, Auburn University Shiwen Mao received Ph.D. in electrical and computer engineering from Polytechnic University, Brook- lyn, NY. Currently, he is the McWane Associate Professor in the Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA. His research interests include cross-layer optimiza- tion of wireless networks and multimedia communications, with current focus on cognitive radio, small cells, 60 GHz mmWave networks, free space optical networks, and
desirable when compared to other engineeringschools because they have a shorter on-the-job learning curve as a result of the practicalexperience they gained. Faculty members engaged in industry-supported research usuallyinvolve undergraduates. Thus, the graduate profile reflects the College vision of “A scholarlycommunity dedicated to excellence through student-centered education and researchemphasizing professional practice in engineering and applied science" and the College missionof preparing “job-ready graduates.”Background on S-STEM Scholars ProgramBegun in 2010, the S-STEM Scholar Program increases opportunities for financially needy butacademically talented students. These students: • Come into the S-STEM Scholar Program as first-time
the Division of Environmental and Ecological Engineering at Purdue University. She plays a leadership role in Purdue’s first-semester first-year engineering course which serves approximately 1,800 students each year. Her research focuses on the development of engineering thinking skills (primarily operationalized as design thinking and mathematical thinking) amongst students as young as 4-years-old, college students, as well as practicing professionals.Dr. Matthew W. Ohland, Purdue University and Central Queensland University Matthew W. Ohland is Professor of Engineering Education at Purdue University and a Professorial Re- search Fellow at Central Queensland University. He has degrees from Swarthmore
to assess the impact of case-based instruction on conceptual understanding andtheir attitudes towards case studies.VI. Acknowledgements This research is funded by the National Science Foundation (Grant # DUE 1140109.Statements made in this paper are the opinions of the authors and may or may not reflect theviews of the National Science Foundation. We would also like to thank our graduate students,Verrol McLeary and Niya King, for their assistance during the lab courses.VII. References1. Howe, N. and W. Strauss, Millennials Rising: The Next Generation. 2000, New York: Vintage Books.2. Elam, C.L., T.D. Stratton, and D.D. Gibson, Welcoming a New Generation To College: The Millennial Students. Journal of College
Paper ID #10355Enhancing the STEM Curriculum Through a Multidisciplinary Approachthat Integrates Biology and EngineeringProf. Jennifer Vernengo, Rowan University Jennifer Vernengo is an Assistant Professor of Chemical Engineering at Rowan University. Jennifer re- ceived her Ph.D. from Drexel University in 2007. She began work as a materials scientist at Synthes Bio- materials, then joined Drexel University College of Medicine as postdoc in 2009. Jennifer two published research papers and one patent in the area of injectable biomaterials for orthopedic tissue replacement and repair. She is particularly interested in
student performance (e.g.grade), apart from merely passing the courses, is important to ultimate success in engineering. Arecent longitudinal study3 further indicates that success, measured solely by the grade achievedin the first semester of college mathematics, independent of secondary mathematics preparationor achievement, is by itself a reliable predictor of retention among engineering undergraduates.This research underscores the importance for engineering education of developing a morethorough and complete understanding of the effective use of interventions aimed at improvingoutcomes in calculus. Impactful interventions with potential for use across the spectrum ofdelivery platforms (traditional, hybrid, synchronous broadcast, asynchronous
most likely to graduate in ME. Pathways of ME starters and ME graduates areillustrated. Nearly half of all ME graduates started somewhere other than ME.Key outcomesThis research has involved considerable work in developing effective data displays. As a result,an additional outcome of this project is a new course, ME 497/597 Visualizing Data, developedand taught by Dr. Richard Layton at Rose-Hulman Institute of Technology. The course is aboutthe principles and practices of designing truthful and compelling visual displays of quantitativedata. This work involves principles of rhetoric, human perception, graphic design, data analysis,and computer programming.The course goals are that after taking this course, students will be able to
c American Society for Engineering Education, 2014 Increasing Retention in Engineering and Computer Science with a Focus on Academically At-Risk First Year and Sophomore Students1. IntroductionThe program described in this paper seeks to increase retention rates for engineering andcomputer science students and to evaluate the effectiveness of best practices for retention ofacademically at-risk students. The main hypothesis is that students who fall behind their cohortearly in their college career are less likely to be retained in engineering and computer science.As such, we focus this project on the academically “at-risk” student group defined as first-yearcollege students who are not
between academic theory and real world practice. Accordingly, the proposedsenior projects should include elements of both credible analysis and experimental proofing asdiscussed in ABETs criteria6. The senior design project can serve as an excellent culminatingexperience in the program of study when it focuses on research and design projects that have Page 24.632.4practical value to consumers or to industry. For the Drexel’s College of Engineering’s ETprogram at our university, the senior design course is a year-long educational journey (threequarters) that takes an idea generated by a student team or an industrial sponsor and culminatesin a
in 2005. Prior to his current position, he worked as a learning scientist for the VaNTH Engineering Research Center at Northwestern University for three years. Yalvac’s research is in STEM education, 21st century skills, and design and evaluation of learning environments informed by the How People Learn framework.Dr. Emily Binks-Cantrell, Texas A&M University Emily (Binks) Cantrell, Ph.D., is a Clinical Assistant Professor of Reading and Language Arts at Texas A&M University - College Station, where she teaches both undergraduate and graduate courses in reading and ESL, co-directs the Texas A&M Reading Clinic, and also serves as the adviser for the Aggie Story- telling Association. She has published
appropriate designs, but tocommunicate these designs in written, oral, and graphical form to a variety of audiences rangingfrom their technical peers to the general public. Indeed, almost all professional engineeringorganizations cite effective communication skills as a top priority for graduating engineers. Forinstance, the National Academy of Engineering (NAE)’s The Engineer of 2020: Visions ofEngineering in the New Century outlines expectations for engineers entering practice within thenear future (National Academy of Engineering, 2004). The report states that it is impossible topractice engineering without communication, and engineers functioning in global networks musthave “an ability to communicate convincingly and to shape the opinions and