Paper ID #27162Board 137: Critical Thinking Skills in Non-calculus Ready First-yearEngineering StudentsDr. Lizzie Santiago, West Virginia University Lizzie Y. Santiago, Ph.D., is a Teaching Associate Professor in the Benjamin M. Statler College of Engi- neering and Mineral Resources. She holds a Ph.D. in Chemical Engineering and has postdoctoral training in neural tissue engineering and molecular neurosciences. She teaches freshman engineering courses and supports the outreach and recruiting activities of the college. Her research interests include neural tissue engineering, stem cell research, attrition and university
from the University of Missouri–Columbia. He is currently a member of the American Society for Engineering Education (ASEE), the American Nu- clear Society (ANS), the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and a student branch advisor for the American Society of Mechanical Engineers (ASME),Dr. Nazli Aslican Yilmaz Wodzinski, Minnesota State University, Mankato Nazli A. Yilmaz Wodzinski graduated from Clemson University with a Ph.D in Civil Engineering in 2014. She joined Minnesota State University, Mankato as a post-doctoral teaching fellow for 2015-16 Acedemic Year. She is still serving at the same institution as an Assistant Professor at the Department of Mechanical and
Paper ID #27114Assessing the Effectiveness of a Large, Open-Ended Design Project in a Junior-Level Engineering Technology CourseDr. Robert Scott Pierce P.E., Western Carolina University Robert Scott Pierce is an Assistant Professor of Engineering and Technology at Western Carolina Univer- sity. He received his Ph.D. in mechanical engineering from Georgia Tech in 1993. Prior to his teaching career, he spent 14 years in industry designing automated equipment.Dr. Wesley L. Stone, Western Carolina University Dr. Wes Stone is an associate professor in the School of Engineering and Technology at Western Carolina University in
materials. She is currently the PI of an NSF S-STEM. Dr. Vernaza is the chair of the ASEE North Central Section (2017-19). c American Society for Engineering Education, 2019 WIP: A Comprehensive Design & Prototyping Platform for Rapid HW/SW Development ClassesAbstract-Robotics, autonomous transportation, and other computerized physical systems become widely accessible subjects foreven a semester-long lecture and laboratory class. Sometimes, the physical systems are often transformed to cyber-physicalsystems (CPSs) by interfacing modules in physical systems to cyber system. It is often challenging for undergraduate students toimplement a CPS comprising of analog and digital hardware and software within
coursesThis paper explains the design of a prototype desktop and augmented Virtual Reality (VR) frameworkas a medium to deliver instructional materials to the students in an introductory computer animationcourse. This framework was developed as part of a Teaching Innovation Grant to propose a cost-effective and innovative instructional frameworks to engage and stimulate students. Desktop-basedvirtual reality presents a 3-dimensional (3D) world using the display of a standard desktop computeravailable in most of the PC labs on campus. This is a required course at this university that has studentsnot only from the primary department, but from other colleges/departments as well. Desktop VR hasbeen chosen as a medium for this study due to the ease-of
time at Rowan and UMass, she developed a passion for undergraduate education. This passion led her to pursue a career as a lecturer, where she could focus on training undergraduate chemical engineering students. She has been teaching at UK since 2015 and has taught Fluid Mechanics, Thermodynamics, Computational Tools and the Unit Operations Laboratory. She is especially interested in teaching scientific communication and integration of process safety into the chemical engineering curriculum. c American Society for Engineering Education, 2019 Understanding the gap between communication in the classroom and communication during an industrial internshipAbstractWhile it
Paper ID #25474Can We Bolt It On? Developing Students’ Transferable Skills in ChemicalEngineeringDr. James Campbell, Imperial College London Currently a Teaching fellow at Imperial College London, Chemical Engineering DepartmentDr. Deesha Chadha, Imperial College London I currently work as a senior teaching fellow in the department of chemical engineering at Imperial College London having previously worked in academic development for a number of years at King’s College London c American Society for Engineering Education, 2019 Work in Progress: Developing Students Transferable Skills
Paper ID #25103Integration of Physics Fundamentals to Prepare Students for the Hi-TechWorld through Design of Filters Deployable in Mobile CommunicationDr. Kanti Prasad, University of Massachusetts, Lowell Dr. Kanti Prasad is a professor in the department of electrical and computer Engineering and is found- ing Director of Microelectronics/VLSI Technology Laboratories at the University Massachusetts Lowell. Professor Prasad initiated the Microelectronics/ VLSI program in 1984, and is teaching 16.469/16.502 VLSI Design and 16.470/504 VLSI Fabrication courses since its inception. From the spring of 1986 Pro- fessor Prasad
’ notes, teaching curricula and bibliographies had been regarded as outside of thescope of the board’s responsibilities as an examining body. It was considered by theCoordinating Committee, however, that it would be essential to the successful introduction ofengineering science (Advanced) that material of this kind should be provided. It is quite evidentthat in setting up the Coordinating Committee with the terms of reference given [44] and with theprovision of extensive teaching resource material the Board embarked on a novel and importantextension of its role” [45].To achieve these goals the coordinating committee set up four working parties. These were: (i) Textbook writing (ii) Teacher training (iii) Laboratory and coursework (iv
Paper ID #26870A Systematic Review of Technologies for Providing Feedback and Grades toStudentsDr. Rebecca Marie Reck, Kettering University Rebecca M. Reck is an Assistant Professor of Mechanical Engineering at Kettering University in Flint, Michigan. Her research interests include instructional laboratories, assessment, and student motivation. She earned a Ph.D. in systems engineering at the University of Illinois at Urbana-Champaign. During her eight years as a systems engineer at Rockwell Collins, she earned a master’s degree in electrical engineering at Iowa State University. She earned a bachelor’s degree in electrical
, and educators inform STEM teaching and learning and inform policy.Dr. Vikram Kapila, NYU Tandon School of Engineering Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics, Controls, and Robotics Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a DR K-12 research project, and an ITEST re- search project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and con- trol system technology. Under a Research Experience for Teachers Site, a DR K-12 project, and GK-12
University of Central Florida and is anticipated to graduate in Spring 2019. He has two masters degrees one in mechanical engineering from UCF and another in aerospace engineering form Sharif University of Technology. He currently works in the Nanofabrication and BioMEMS Laboratory at UCF and his research areas include Nanofabrication, Microfluidics, Sensors and Actuators, Computational Fluid Dynamics, Optimization, and Mathematical Modeling. c American Society for Engineering Education, 2019Running Head: Project CoMET RETCollaborative Multidisciplinary Engineering Design Experiences for Teachers (CoMET) Train the Trainer Model of Supports Type 5 Work in ProgressThe K-12 learning environment is
classroom spaces, active learning, responsive teaching, and elementary school engineering teachers.Mr. Magel P. Su, University of Michigan Magel P. Su is a PhD student in the Department of Applied Physics and Materials Science at the California Institute of Technology. He earned a B.S.E in materials science and engineering and a minor in chemistry from the University of Michigan. At Michigan, he was a member of the Ultrafast Laser - Material Interac- tion Laboratory and the Engineering Honors Program. He also served as an instructor for several courses including Introduction to Engineering, Introduction to Materials and Manufacturing, and Structural and Chemical Characterization of Materials.Mr. Max William Blackburn
provide nice mealsand accommodations so the teachers look forward to attending each summer. The college doesnot pay high school teachers to deliver ENGR 102 HS since it is a dual credit offering in theirhigh school, however, a modest stipend is paid for workshop attendance and travel expenses arecovered. Faculty who teach the ENGR 102 course on campus spend time training the high schoolteachers. The high school and university ENGR 102 teaching teams bond in the retreat-likeatmosphere of the workshop and natural mentoring relationships form.The first two days of the workshop are for teachers new to the program and day one begins oncampus with tours of the UA College of Engineering laboratories and competition of paperwork.Teachers review the
Paper ID #26705Integrating 3-D Printing and CAD into a Materials Science and EngineeringCurriculumProf. Lorraine Francis, University of Minnesota, Twin Cities Lorraine Francis is a Professor in the Department of Chemical Engineering and Materials Science at the University of Minnesota and the 3M Chair in Experiential Learning in the College of Science and Engineering at the University of Minnesota. Her research is focused on the field of materials processing. She has developed several courses and authored a textbook.Prof. Michael Manno, University of Minnesota, Twin Cities Michael Manno is a Teaching Associate Professor in
nonviral gene therapy systems. At Rice University she has developed and taught courses in The Department of Bioengineering includ- ing Numerical Methods, Pharmaceutical Engineering, Systems Physiology, Biomaterials and Advances in BioNanotechnology. c American Society for Engineering Education, 2019 Grad Student STEM Share: From Pilot Program to Beyond STEMAbstract Our country has been struggling to improve teaching in K-12 classrooms and disparitiesin our school systems for the past three decades. There are growing challenges in K-16 Science,Technology, Engineering and Mathematics (STEM) education including the lack of studentinterest and role models, particularly for underrepresented
Paper ID #25992Board 57: Identifying and Disseminating Transformative Professional Devel-opment of STEM Undergraduates Who Perform Outreach: Progress in Year1Mr. Michael Alley, Pennsylvania State University, University Park Michael Alley is an associate professor of teaching in the College of Engineering at Pennsylvania State University. He is the author of The Craft of Scientific Writing (Springer, 2018) and The Craft of Scientific Presentations (Springer-Verlag, 2013). He is also founder of the popular websites Writing Guidelines for Engineering and Science (www.craftofscientificwriting.com) and the Assertion-Evidence
Projects. He is currently taking manual and CNC classes at Laney Community College in Machine Tool technology. Mr. Steffan Long: Mr. Steffan Long is the head machinist at the California State University Maritime. He received his BA in Liberal Arts from the University California Santa Cruz. He teaches intro and advanced courses in machining as well as supervises the manufacturing of the ME Senior Design Projects. Mr. Adam Link: Mr. Adam Link is a senior in Mechanical Engineering at the California State University Maritime. Mr. Sean McPherson: Mr. Sean McPherson is a senior in Mechanical Engineering at the California State University Maritime. Mr. Scott Wettstein: Mr. Scott Wettstein is a senior in
” by Young and Freedman[24]. Students of the course also attended weekly laboratory sessions where “Tutorials inIntroductory Physics” by McDermott and Schaffer [25] was used extensively. All courseactivities, including the tests, were conducted in Spanish.The E&M course uses active learning for instruction [26]. During the semester, besides the useof Tutorials, a very successful teaching strategy created by McDermott, et al. [25], the instructoruses Mazur´s Peer Instruction, a conceptual-based educational strategy [11]. He also employsproblem-solving activities using collaborative learning, conceptual building activities such asTasks Inspired by Physics Education Research (TIPER) [27] and educational technologies suchas Interactive
from zyBooks have shown excellent results. Course median reading rates up to 99%were observed. The interactive textbook format has also been demonstrated to help students in thelower third of the class engage in the course [7, 8, 19, 20, 25-27]. Reading participation using azyBook is also discussed in another 2019 ASEE contribution.In this contribution, an interactive textbook for teaching spreadsheets will be reviewed, readingparticipation and repetition analyzed, and successes and challenges of auto-graded problemssummarized.Materials: An interactive textbook with spreadsheetszyBooks creates interactive textbook replacements using the philosophy: Less text, more actionTM.These interactive textbooks are viewed, read, and interacted with in
. Self, California Polytechnic State University, San Luis Obispo Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011-2012 academic year he participated in a professor exchange, teaching at the Munich University of Applied Sciences. His engineering education interests include collaborating on the Dynamics Concept Inventory, developing c American Society for Engineering
US Navy Laboratories and employment with Koch Industries. Dr. Bachnak is a registered Professional Engi- neer in the State of Texas, a senior member of IEEE and ISA, and a member of ASEE.Dr. Shashi S. Marikunte, Penn State Harrisburg Shashi S. Marikunte is an Associate Teaching Professor of Civil Engineering at The Pennsylvania State University, Middletown, Pennsylvania. He serves as the ABET Coordinator for Civil Engineering (CE) as well as Structural Design and Construction Engineering Technology (SDCET) programs. He received his PhD in Civil Engineering from Michigan State University. His research interests include high- performance cement composites, recycled materials in concrete, durability of concrete, non
Paper ID #27005Board 35: An Integrated Program for Recruitment, Retention, and Gradua-tion of Academically Talented Low-Income Engineering StudentsProf. Houshang Darabi, University of Illinois, Chicago Dr. Houshang Darabi is an Associate Professor of Industrial and Systems Engineering in the Depart- ment of Mechanical and Industrial Engineering (MIE) at the University of Illinois at Chicago (UIC). Dr. Darabi is the recipient of multiple teaching and advising awards including the UIC Award for Excellence in Teaching (2017), COE Excellence in Teaching Award (2008, 2014), UIC Teaching Recognitions Award (2011), and the
Paper ID #25374The Impact of Course Transformation on Student Learning and Success inFundamental Electrical Engineering/Computer Science CoursesDr. David O. Johnson, University of Kansas David O. Johnson is a Lecturer in the Electrical Engineering and Computer Science department at the Uni- versity of Kansas in Lawrence, KS, USA. He received his BSEE and MSEE from Kansas State University and his PhD in Computer Science from the University of Kansas. Prior to two post-doctoral research appointments at the Eindhoven University of Technology in the Netherlands and in the Applied Linguis- tics Speech Laboratory at Northern
produce computer-based models at theexpense of physical models. This fact is behind a general trend of teaching applied engineeringsubjects with minimal students’ involvement with physical set-ups including: laboratoryexperiments. Carrying out laboratory experiments and generating experimental data, visiting aproject site, and using pencil and paper to produce a schematic, are gradually fading away. Thesetraditional tools were instrumental in developing an engineering common sense. It is argued herethat generating data from physical models is potentially a great learning tool, particularly whenthe model is built by the students. Building a model, testing a model, generating physical datafrom the model, and analyzing said data, help students
intended learning outcomes that they enhance. Prof Lindsay is the Foundation Professor of Engineering at Charles Sturt University. His research interests centre largely around online learning – the use of remote and virtual laboratories, MOOCs and other methods for making learning asynchronous, and data analytics for promoting student learning. Prof Lindsay was the 2010 President of the Australasian Association for Engineering Education. He is a Fellow of Engineers Australia, and a Fellow of the UK Higher Education Academy. Prof Lindsay was the recipient of a 2007 Carrick Award for Australian University Teaching. In 2005 he was named as one of the 30 Most Inspirational Young Engineers in Australia.Dr. Colm Howlin
Paper ID #26383Assessing Student Responses to the Potential Conflict between Safety andWelfare in the American Society of Civil Engineers Code of EthicsDr. Matthew Sleep P.E., Oregon Institute of Technology Matthew Sleep is an associate professor of civil engineering at Oregon Institute of Technology. Prior to Oregon Tech, Matthew received his PhD at Virginia Tech researching slope stability, levees, transient seepage and reliability. Matthew is from Nashville, TN and has worked for the United States Army Corps of Engineers and private consulting. He currently teaches and continues research on reliability and transient
program.Mrs. Lori Nelson, Nueta Hidatsa Sahnish College Lori Nelson began her professional experience as an Industrial Engineer working the capacity of business process manager for a major U.S. aerospace manufacturing firm. This role provided functional consulting for supply chain with key ownership responsibility ensuring appropriate data design of master data, IT architecture and solution design for all ERP solutions across the organization. She holds a Masters of Arts in Teaching Mathematics from Minot State University, a Bachelor of Science degree in Industrial Engineering and Management from North Dakota State University, and post-masters certificate in Experiential Education through Equine Assisted Learning from
-Champaign. From 2002 to 2005, he was a postdoctoral research associate at the Electromagnetics Laboratory in the University of Illinois at Urbana-Champaign. He was an assistant professor with the Department of Elec- trical Engineering, the University of Texas at Arlington from 2005 to 2012. He joined the Department of Electrical and Computer Engineering, West Virginia University Institute of Technology in 2012, and he is currently an associate professor. His current research interests include wireless power transmission, radar systems, microwave remote sensing, antenna design, and computational electromagnetics. He was the recipient of the first prize award in the student paper competition of the IEEE International
Paper ID #25669Extending Systems Thinking Skills to an Introductory Mechanical Engineer-ing CourseDr. Karim Heinz Muci-Kuchler, South Dakota School of Mines and Technology Dr. Karim Muci-K¨uchler is a Professor of Mechanical Engineering and Director of the Experimental and Computational Mechanics Laboratory at the South Dakota School of Mines and Technology (SDSM&T). Before joining SDSM&T, he was an Associate Professor of Mechanical Engineering at the University of Detroit Mercy. He received his Ph.D. in Engineering Mechanics from Iowa State University in 1992. His main interest areas include Computational