Paper ID #31726Building the Bioengineering Experience for Science Teachers (BEST)Program (Work in Progress, Diversity)Dr. Miiri Kotche, University of Illinois at Chicago Miiri Kotche is a Clinical Professor of Bioengineering at the University of Illinois at Chicago, and cur- rently serves as Director of the Medical Accelerator for Devices Laboratory (MAD Lab) at the UIC Innovation Center. Prior to joining the faculty at UIC, she worked in new product development for medi- cal devices, telecommunications and consumer products. She also serves as co-Director of the Freshman Engineering Success Program, and is actively
Paper ID #31081Work in Progress: Experiential Modules using Texas Instruments RoboticSystem Learning Kit (TI RSLK) for Teaching Control SystemsJun Ouyang, University of California, Davis Mr. Ouyang have obtained two bachelor degrees in EE and Computer Science from UC Davis. He is currently a master student in UC Davis. In the present, He is working on a SAR ADC IC. In addition, he is working on revising different laboratory materials to teach prospective electrical engineering students.Prof. Hooman Rashtian, University of California, Davis Hooman Rashtian received the Ph.D. degree in Electrical and Computer Engineering from
Paper ID #28714Work in Progress: Involving Teachers in International Community EngagedLearning Projects to Enhance Their Understanding of Engineering andIntercultural AwarenessDr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro
lectures and recitation focused on projectdevelopment and project management skills. From a grant provided in 1993 by the National Science Foundation, New YorkUniversity’s EG 1003 was created with learning objectives on project management, teamwork,technical communication, engineering experiments, and design. 300 students per semester, or 82percent of first-year students in the college of engineering enroll in EG 1003. The curriculum ofEG 1003 is broken up into four components. The laboratory exercises occur in a three-hourperiod where students learn key concepts of engineering through hands-on prototyping anddevelopments. Recitations are weekly sessions where students give professional presentations onthe technical skills practiced in the
applications to solving chemical and biological problems, such as fuel cells, microreactors, and high-throughput chemical/biological assays.Dr. Praveen Shankar, California State University, Long Beach Dr. Praveen Shankar is an Associate Professor in the Department of Mechanical and Aerospace Engi- neering at California State University, Long Beach. Dr. Shankar’s research expertise is in the analysis and design of control systems for complex dynamic systems. He serves as the director the Collaborative Autonomous Systems Laboratory at CSULB which focuses on the development and testing of advanced motion planning and control technologies for autonomous robotic systems. American
decrease Primary Energy consumption,” Ph. D. Dissertation, Pennsylvania State University, University Park, PA, USA, 2019.[6] BCHP Screening Tool. US Department of Energy: ORNL, 2007.[7] RETScreen. Natural Resources Canada, 2010.[8] HOMER (Hybrid Optimization of Multiple Energy Resources). HOMER Energy LLC, 2014.[9] DER-CAM (Distributed Energy Resources -Customer Adoption Model). Lawrence Berkeley National Laboratory, 2016[10] Lawrence Berkeley National Laboratory, “DER-CAM User Manual,” Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, USA, Manual, 2016. Accessed: Apr. 12, 2018. [Online]. Available: https://building-microgrid.lbl.gov/sites/default/files/DER- CAM_User_Manual_V4
Engineering Historical perspective of nanomaterials Advanced materials Materials, structure, and nanosurface Energy at nanoscale Nanoscience phenomena, bulk to quantum properties Characterization techniques X-ray Diffraction (XRD) Scanning Electron Microscopy (SEM) Energy Dispersive Spectroscopy (EDS) Transmission Electron Microscopy (TEM) Atomic Force Microscopy (AFM) Raman Spectroscopy Fourier-Transform Infrared Spectroscopy (FTIR) Fabrication methods of nanomaterials, “bottom-up”, “top-down” fabrication Chemical synthesis and modification of nanomaterials Non-thermal plasma technique to synthesize nanomaterials Nano-electro mechanical structures (NEMS) Applicationsnanomaterials. These observational laboratory
improve conceptual understanding and critical thinking.Dr. Heather Dillon, University of Portland Dr. Heather Dillon is an Associate Professor in Mechanical Engineering at the University of Portland. Her research team is working on energy efficiency, renewable energy, fundamental heat transfer, and engineering education. Before joining the university, Heather Dillon worked for the Pacific Northwest National Laboratory (PNNL) as a senior research engineer.Jeffrey Matthew Welch, University of Portland Jeff Welch is a doctoral student in educational leadership at the University of Portland (Oregon, USA).Dr. Nicole C. Ralston, University of Portland Dr. Nicole Ralston is an Assistant Professor and co-Director of the
students (18 to24-year-olds) (40%), transfers (23%), internationals (7%), and non-traditional, returning adults(30%).The CourseThe Applied Fluid Mechanics course (MET 4100) is one of the core courses for the METprogram and the second in the sequence of fluid mechanics coursework, following the MET2050 Fluid & Hydraulic Mechanics. MET 4100 is a four-credit hour (ch) course, comprised of a3ch lecture and a 1ch laboratory. This course focuses on the applications of the basic principlesof fluid dynamics, including general laminar and turbulent flow, compressible flow, as well aspractical, applied problems, such as the internal flow of fluids in pipes and conduits, pumpselection and application, the design and analysis of HVAC ducts, and external
; Bird B-KER2 Laboratory Jars and Masterflex Tygon lab tubing toconnect both, one student holds the reservoir at a fixed location simulating a water source suchas a natural spring, lake, or river, and another student adjusts the elevation of the tap stand usinga simulated gate valve from the sampling port of the laboratory jar. As the tap stand locationremains lower than the location of the reservoir, students can notice water continuing to flow asthe third student is responsible for turning the tap stand valve on and off. However, as soon asthe location of the tap stand is higher than the location of the reservoir, water flow stops. Thus,students realize that the location of the outflow must be lower than the location of the inflowassuming
affiliated with high schools and colleges including vocational schools. The followinglist provides the accomplishments made by this coalition: • Multi-institutional AM collaboration in teaching, laboratory practices and research [3], • Framework developed to measure the attainment of ABET Student Outcomes through AM curricular practices. [4], • Smart phone accessible AM laboratory platform for multi-institutional collaboration [5], • Up to date skills required of AM technicians [6], • TTS: studio-based AM training [7], • Using AM as an innovation tool to enhance the student learning and success [8-9], • Up to date MOOC AM
consistency of a sample inquality control of products in sustainable manufacturing field [6]. Additionally, the spectrumpeak intensity determines the amount of components in a mixture, which can be used forquantification of sample constituents.The use of the FTIR Spectroscopic Imaging system can enable a variety of projects in variouscourses. Currently, the Electrical and Computer Engineering Department, Mechanical andMechatronic Engineering and Sustainable Manufacturing Department, and Chemistry andBiochemistry Departments at CSU Chico are using this equipment in several courses such asDigital Image Processing, Material Science and Engineering, Material Science and EngineeringLaboratory, Organic Chemistry Laboratory, Integrated Laboratory and
engineering profession, without the need for highly technical knowledge that mostengineering laboratory courses require. A pertinent means of keeping students invested in thecourse, as well as the engineering profession, is through active learning techniques. Studies haveshown that an active learning environment produces strong indications of success and increasedstudent persistence in engineering [3] [4] [5].Course leadership initiated ENGR 111 development with a primary objective to, as much aspossible, base course pedagogy in active learning methodology to take advantage of the resultantbenefits to the student(s). Active learning can be defined as “any instructional method that engagesstudents in the learning process” [6], yet active learning is
Paper ID #29831Remotely Accessible Injection Molding Machine for ManufacturingEducation: Lessons LearnedDr. Sheng-Jen ”Tony” Hsieh, Texas A&M University Dr. Sheng-Jen (”Tony”) Hsieh is a Professor in the College of Engineering at Texas A&M University. He holds a joint appointment with the Department of Engineering Technology and the Department of Mechanical Engineering. His research interests include engineering education, cognitive task analysis, automation, robotics and control, intelligent manufacturing system design, and micro/nano manufactur- ing. He is also the Director of the Rockwell Automation laboratory at
course, whileaffording departments the flexibility to fit the first-year design course into their curriculum. Thecourse structure, half-lecture and half-laboratory course, is designed to optimize the use of themakerspace classroom. The lecture half is structured as online videos and other learning contentstudents need to complete before coming to the live laboratory makerspace portion of class.Students attend the live makerspace class once per week for a two-hour block of time. Thelaboratory half is structured for students to work in teams, utilize the makerspace tools, andreceive feedback from the professor and peer mentors on their projects. With the combinedonline lecture and live laboratory format, students are expected to complete
sizeof 45 students; typically requiring three sections. Teaching assistants are available in the labs toanswer students questions related to the use of the software; AutoCAD or Civil 3D.[2]Laboratory assignments were assigned as either projects or lab experiences depending on therequired effort expected from students. Labs consisted of drawings to complete where the CADsoftware features were demonstrated and video recorded in the lab session. The students wouldtypically have one week, with three hours of lab time in two 1.5-hour sessions, to complete theirdrawings. The projects would also have a laboratory demonstration (and recording) but theassignments were longer in duration and more laboratory sessions (typically four 1.5-hour labs)were
lab classes often experience dissatisfaction not because they dislike hands-on learning, but because they are overwhelmed by other components and deliverables of the labclass.At the other end of the spectrum, some hands-on learning has focused on very simplemanipulators that are designed to provide a qualitative reinforcement of concepts. One of thegoals of this NSF IUSE project is to create simple hands-on experiments that can be highlyportable for use in lecture rooms, laboratories, or even dorm rooms but can still go beyondqualitative demos and yield quantitative confirmation of engineering models. Due to advances inportable data acquisition devices, laptop computers, and affordable sensors, there is anunprecedented opportunity to make
Fluid Mechanics for annotating an online text and journals papers, with bothprompts by the faculty member seeding the annotation process, along with requirements forstudents to post and respond to questions or annotations made by others. The machine-learningalgorithms that are built into Perusall automatically grade student comments. The instructor canverify that the grade is consistent with their assessment.Referring to their annotated class notes, text, and optional online references, students can applytheir knowledge to design networks and step through the process of configuring network devicesin laboratory activities. As part of the reviews for exams, students can also annotate their classnotes, and their annotated textbook as well. In
) student interaction patterns (i.e. networks) during thesemester, b) relationships between student interaction patterns and course performance asmeasured by exam grades, and c) student motivations for changing their interaction preferencesduring the semester. MethodsCourse ContextThis study was conducted during the spring 2019 offering of a 2nd year engineering materialsscience course. The course is required for all students enrolled in the mechanical engineeringprogram at our institution. The course comprises two weekly, 75-minute, f2f lecture sessions. Anassociated materials science laboratory course is typically taken concurrently, which comprisesone two-hour lab session every other week. Lectures
Illinois in 2015. His research focuses on defects in materials using density-functional theory, and novel techniques to understand problems in mechanical behavior and transport.Prof. Andre Schleife, Andr´e Schleife is a Blue Waters Assistant Professor in the Department of Materials Science and Engineer- ing at the University of Illinois at Urbana-Champaign. He obtained his Diploma and Ph.D. at Friedrich- Schiller-University in Jena, Germany for his theoretical work on transparent conducting oxides. Before he started at UIUC he worked as a Postdoctoral Researcher at Lawrence Livermore National Laboratory on a project that aimed at a description of non-adiabatic electron ion dynamics. His research revolves around
. Michael A. Gennert, Worcester Polytechnic Institute Michael A. Gennert is Professor of Robotics Engineering, CS, and ECE at Worcester Polytechnic Institute, where he leads the WPI Humanoid Robotics Laboratory and was Founding Director of the Robotics Engineering Program. He has worked at the University of Massachusetts Medical Center, the University of California Riverside, PAR Technology Corporation, and General Electric. He received the S.B. in CS, S.B. in EE, and S.M. in EECS in 1980 and the Sc.D. in EECS in 1987 from MIT. Dr. Gennert’s research interests include robotics, computer vision, and image processing, with ongoing projects in humanoid robotics, robot navigation and guidance, biomedical image processing
Michelson, SUNY Alfred State CollegeProf. Reza Rashidi, State University of New York, Alfred State Reza Rashidi is an Assistant Professor in Mechanical Engineering Technology and a faculty affiliate in Mi- cro/Nano Fabrication Laboratory at State University of New York, Alfred State College. He received his Ph.D degree in Mechanical Engineering (MEMS development) from the University of British Columbia in 2010 and completed his Postdoctoral Fellowship in Development of Biomedical Sensing Devices in the Department of Electrical and Computer Engineering at the University of British Columbia in 2011. He also received a minor degree in Engineering Management and Entrepreneurship from the University of British Columbia in
Paper ID #28677Design and Construction of a Soil Sterilizer - A Student Design ProjectProf. Emin Yilmaz P.E., University of Maryland, Eastern Shore Emin Yilmaz is a Professor of Engineering Technology at the University of Maryland Eastern Shore. He has BS and MS degrees in Mechanical Engineering and a Ph.D. degree from the University of Michigan in Nuclear Engineering. He is a heavy user of computers in courses and in his research. He developed and taught several laboratory courses in engineering and engineering technology.Gary Harding, GKD-USA, INC. c American Society for Engineering Education, 2020
Paper ID #30133Enlightened Education: Solar Engineering Design to Energize SchoolFacilitiesDr. Kenneth A. Walz, Madison Area Technical College Dr. Walz completed his Ph.D. at the University of Wisconsin, while conducting electrochemical research on lithium-ion batteries with Argonne National Laboratory and Rayovac. His studies also included re- search with the University of Rochester Center for Photo-Induced Charge Transfer. Since 2003, Dr. Walz has taught science and engineering at Madison Area Technical College, where he serves as the director of the Center for Renewable Energy Advanced Technological Education (CREATE
and applied electronics. Dr. Yahya previously served on the faculties of KFUPM, KSA (94-98); Tuskegee Univ., USA (99-2000) and Sharjah Univ., UAE (2003-2009). He taught more than twelve graduate and undergraduate courses and developed several courses and laboratories. Dr. Yahya was a member of technical staff at the Advanced Optical Network- ing Group, Lucent Technologies during 2001 and 2002. He was responsible for designing, testing and evaluating optoelectronic subsystems to support the company telecom business. Dr. Yahya’s research interests include Smart metering and energy conservation; Performance monitoring and optimization of solar PV power systems; Powering Methods for sensors and mobile devices based on
each course focused on a specific construction topic.The department requires every student to take at least two of these topics courses prior tograduation. Previously, there was minimal BIM software or skills taught within the curriculum.After two years of course development and increased student interest, the BIM course became arequired course in 2015. The class meets four hours per week, for a ten-week quarter and istaught in a computer laboratory. This class is listed as an Activity, rather than a Lecture or aLaboratory. It is the goal of this course to introduce students to a number of BIM softwaresystems and tools used within the industry. The class covers eleven software systems in tenweeks. The software systems currently covered include
consisted of the application of Monte Carlo techniques to model a germanium detector for use in astrophysics studies. The study was part of the Gamma Ray Observatory program on the WIND satellite. In addition, the Monte Carlo technique was used to model the geometry of the Spectrometer for Integral (SPI) of the International Gamma Ray Astrophysics Laboratory, INTEGRAL. This project was launched in October 17, 2002. Cur- rent research activity has been in the area of Aviation Safety. In particular, the development of monitoring technologies to enable detection of unsafe behaviors in the flight deck. Have made presentations in in- ternational forums in Serbia, Japan, Spain, Australia and Ireland. Graduated with a B.Sc
research scientist at the Canadian Nuclear Laboratories (CNL) from 2013 through 2017. In addition, he was employed at Motorola as a senior soft- ware engineer from 2003 through 2007, and IBM from 2011 through 2013. He received his B.S. and M.S. degrees from Sichuan University, China in 2000 and 2003, respectively, and his Ph.D. degree from Southern Illinois University Carbondale in 2011. His research interests include high-performance com- puting, computer architectures, real-time systems, and wireless sensor networks. He has published over 30 peer-reviewed research papers. American c Society for Engineering Education, 2020 Undergraduate Summer Research in
experts in teaching and research directly related to the light hydrocarbon industry and shalefuel conversion. Second, we will send the survey to our list of 26 industrial partners. Thesepartners range from multinational oil and gas companies to boutique consulting and advisoryfirms focusing on oil and gas, energy, and chemicals. This list also includes national laboratories(i.e., Argonne, Oak Ridge, Pacific Northwest, and Sandia), international universities, andfoundations. The list will also be distributed through networks of the CISTAR faculty to expertsin the field. Together, this list encompasses a wide range of experts across a number of divisions.If the first survey reveals a lack of input from a particular sector, purposeful sampling will
students for successful careers inengineering by developing essential soft skills. This paper reports the approach taken to improvean engineering course by incorporating a PD component. This is a 3-credit first-year engineeringfoundations laboratory course, which focuses on the fundamentals of design processes. In its firstiteration, over 500 first-year students performed three sequential assignments to complete themodule. These students methodically engaged in a career readiness process within a program thatdocuments achievement while promoting their academic growth. The intent is to presentprofessional contexts as part of their undergraduate experience.The PD module in this course is initiated by students’ automatic enrollment in the