group involve designing polymeric, degradable therapeutic pulmonary aerosols for immune engineering and creating 3D-printed lung replicas to advance in vitro deposition testing. c American Society for Engineering Education, 2020 Putting Course Design Principles to Practice: Creation of an Elective on Vaccines and ImmunoengineeringAbstractAt our university, most assistant professors are expected to develop and deliver a newsenior/graduate-level elective course related to their research. We present here a collaborationbetween a non-tenure-track, teaching-focused associate professor (Professor A) and a newtenure-track assistant professor (Professor B) to design a course using principles
Paper ID #29057The Design and Impact of a Combined Makerspace, Wet Lab, andInstructional Design Studio for Chemical Engineering CurriculumProf. Anthony Butterfield, University of Utah Anthony Butterfield is an Associate Professor (Lecturer) in the Chemical Engineering Department of the University of Utah. He received his B. S. and Ph. D. from the University of Utah and a M. S. from the University of California, San Diego. His teaching responsibilities include the senior unit operations laboratory, capstone laboratory, first year design laboratory, and the introduction to chemical engineering. His research interests focus
Biomolecular Engineering at NC State University where he teaches Senior Design, Material and Energy Balances, Unit Operations, Transport Phenomena and Mathematical/Computational Methods. He is the recipient of teaching and pedagogical research awards including the NCSU Outstanding Teacher Award, ASEE ChE Division Raymond W. Fahien Award and the 2013 and 2017 ASEE ChE Division Joseph J. Martin Awards for Best Conference Paper. Dr. Cooper’s research interests include effective teaching, process safety decision-making skills and best practices for online education.Dr. Daniel D. Burkey, University of Connecticut Daniel Burkey is the Associate Dean of Undergraduate Programs and Professor-in-Residence in the De- partment of
the Electrophoresis.Mrs. Olivia Reynolds, Washington State University c American Society for Engineering Education, 2020 Paper ID #30913 Second year chemical engineering doctoral student pursuing research on the development and dissem- ination of low-cost, hands-on learning modules displaying heat and mass transfer concepts in a highly visual, interactive format. Graduated from Washington State University with a B.S. degree in chemical engineering in 2017 and with an M.S. degree in chemical engineering in 2018.Katelyn Dahlke, University of Wisconsin - Madison Katelyn Dahlke received her B.S. in
Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering fos- ter or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical Engineering and Ph.D. in Engineering and Science Education. Her research earned her a National Science Foundation CAREER Award focused on characterizing latent diversity, which includes diverse attitudes, mindsets, and approaches to learning, to understand engineering stu- dents’ identity development. She has won several awards for her
devicessuch as cell phones, tablets, and computers to assist in finding course-related information.While homework problems from textbooks are designed to allow engineering students to practiceproblem solving, easy accessibility of solution manual has created an issue [14, 22]. Besides beingan issue of academic integrity, copying solutions rather than putting effort into learning courseconcepts and developing problem-solving skills could inhibit success [14]. In fact, problem-solving skills has been identified as a major concern for students learning MEB [19].YouTube pedagogy has students actively creating new course content, which falls under the guiseof research-based best practices commonly called active learning [23-25]. The YouTube
Paper ID #30488First Impressions: Engaging First-Year Undergraduates in ChemicalEngineering DesignTommy George, Harvard University Tommy George is a graduate student at the John A. Paulson School of Engineering and Applied Sciences at Harvard University. He is currently working towards a PhD in Engineering Science with a research focus in renewable energy storage, and he graduated from Tufts University with a B.S. in Chemical Engineering. Tommy worked with the Tufts Center for Engineering Education and Outreach throughout his undergraduate studies, developing ongoing interest in the design of engaging engineering learning
: 10.1002/j.2168-9830.2005.tb00832.x.[2] “Graduate Attributes,” Engineers Canada. https://engineerscanada.ca/sites/default/files/Graduate-Attributes.pdf (accessed Mar. 10, 2020).[3] “Criteria for Accrediting Engineering Programs, 2019 – 2020 | ABET.” https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-engineering- programs-2019-2020/ (accessed Mar. 10, 2020).[4] B. Frank, D. Strong, and R. Sellens, “The professional spine: Creation of a four-year engineering design and practice sequence,” Proc. Can. Eng. Educ. Assoc., 2011.[5] W. Clark, D. DiBiasio, and A. Dixon, “A project-based, spiral curriculum for introductory courses in ChE: Part 1. curriculum design,” Chem. Eng. Educ., vol. 34, no. 3, pp. 222
experience in infectious disease and epidemiology, providing crucial exposure to the broader context of engineering problems and their subsequent solutions. These diverse experiences and a growing passion for improving engineering edu- cation prompted Dr. Miskio˘glu to change her career path and become a scholar of engineering education. As an educator, she is committed to challenging her students to uncover new perspectives and dig deeper into the context of the societal problems engineering is intended to solve. As a scholar, she seeks to not only contribute original theoretical research to the field, but work to bridge the theory-to-practice gap in engineering education by serving as an ambassador for empirically
Engineering from Purdue University in 2015. Her primary focus is on the application of research-based teaching methods in engineering education.Dr. Jennifer Cole, Northwestern University Jennifer Cole is the Assistant Chair in Chemical and Biological Engineering in the Robert R. McCormick School of Engineering and Applied Science at Northwestern University and the Associate Director of the Northwestern Center for Engineering Education Research. Dr. Cole’s primary teaching is in capstone and freshman design, and her research interest are in engineering design education.Dr. Kevin D. Dahm, Rowan University Kevin Dahm is a Professor of Chemical Engineering at Rowan University. He earned his BS from Worces- ter Polytechnic
development. He is the recipient of several ASEE awards, including the Fahein award for young faculty teaching and educational scholarship, the Corcoran award for best article in the journal Chemical Engineering Education (twice), and the Martin award for best paper in the ChE Division at the ASEE Annual Meeting.Dr. Sarah A Wilson, University of Kentucky Sarah Wilson is a lecturer in the Department of Chemical and Materials Engineering at the University of Kentucky. She completed her bachelor’s degree at Rowan University in New Jersey before attending graduate school for her PhD at the University of Massachusetts in Amherst, MA. Sarah conducted her thesis research on the production of the anti-cancer compound Paclitaxel