Co-op or Critical Thinking Internship Intro to Departments Strength/Weakness ID Ethics Intro to Campus Team Management
discussed during the presentation of final class projects projects,, so that green solutionsfrom the beginning of the project can be aachieved in the AEC industry. Also, guest lectures onsustainability, BIM technology, ethics, and green markets potential are delivered.Figure 2.. Schematic diagram for the proposed framework3Students in the proposed course are expected to gain (1) uunderstanding of green resources suchas building materials, building forms, and building systems, (2) hands hands-on on experience with BIM,especially 3D geometric models
Paper ID #10226An inclusive process for developing a taxonomy of keywords for engineeringeducation researchDr. Cynthia Finelli, University of Michigan Dr. Cynthia Finelli is Director of the Center for Research on Learning and Teaching Engineering and research associate professor in the College of Engineering at the University of Michigan. She actively pursues research in engineering education and assists other faculty at U-M in their scholarly endeavors. Her current research interests include studying faculty motivation to change classroom practices, evalu- ating methods to improve teaching, and exploring ethical decision
grade has a lower impact on their future, and have more confidence in their choice ofmajor than females in low representation majors. Compared to top enrollment majors, BIOE’sfeel they are struggling more with their courses and have less faculty support. BIOE females feelthey have a greater understanding and ethical responsibility, and confidence in their choice ofmajor compared to top enrollment females. Due to the consistency of these results a predictivemodel of choice of long-term engineering goal was created. Students who score highly onknowing an engineer as a reason for selecting a major, wanting a good potential salary, designingand building things, and their perceptions of the present were likely to be traditional engineers.Students
building, testing, operating andmaintaining laser and electro-optical devices and systems.2. Demonstrate critical thinking skills in applying basic photonics technology principles to solve Page 24.385.4technical problems.3. Exhibit effective oral and written communication skills, team work, and ethical andprofessional behavior in the workplace.4. Continue professional training and adapt to changes in the workplace through additionalformal and informal education.”Achievement of the PEO’s is supported by the Program Outcomes (PO) which capture whatstudents should know and be able to do at the time of graduation. Both PEO’s and PO’s werediscussed with
amorphous silicon solar cells, organic solar cells, organic light emitting diodes (OLED), and thin film transistors (TFT).Dr. Nael Barakat, Grand Valley State University Nael Barakat is the mechanical engineering Program Chair at GVSU, a registered Professional Engineer in Ontario, Canada, and a fellow of the ASME. He joined academia in 2003 after years of industrial experience and consulting. Barakat holds a Ph.D. in mechanical engineering from McMaster University, Canada. His areas of interest include controls, robotics, automation, systems integration, metrology, and NEMS, as well as engineering ethics, professionalism, and education
directs the Kansas Wind Applications Center and teaches wind and solar energy system design, as well as undergraduate classes in electronics, electromagnetics, and engineering ethics. Page 25.456.1 c American Society for Engineering Education, 2012 DEVELOPMENT OF A POWER ELECTRONICS LAB COURSE WITH RENEWABLE ENERGY APPLICATIONSIntroductionIt is widely accepted, and much research has shown, that laboratory experience is an essentialpart of a good education in power electronics1-6. Engineering students at Kansas State Universityhave many opportunities for hands-on learning in lab classes
ASME. He joined academia in 2003 after years of industrial experience and consulting. Barakat holds a Ph.D. in mechanical engineering from McMaster University, Canada. His areas of interest include controls, robotics, automation, systems integration, metrology, and NEMS, as well as engineering ethics, professionalism, and education.Dr. Lihong (Heidi) Jiao, Grand Valley State University Lihong (Heidi) Jiao is currently an Associate Professor in the Padnos College of Engineering and Com- puting at Grand Valley State University. She received her B.S.E.E. and M.S.E.E. from Nankai University, China and Ph.D in electrical engineering from the Pennsylvania State University. Her teaching interests include solid state device
integration of students and development of student-faculty bonds. It is expectedthat eight seminars will be held per academic year. Potential seminar topics are: (1) The CSET-STEMProgram, (2) Applying for Graduate School and Financial Aid, (3) Finding a Mentor, (4) Ethics, (5)Public Speaking, (6) Understanding Group Dynamics, (7) Managing Intellectual Property, (8) TimeManagement, and (9) Technical Writing.(b)Graduate School and/or Employment Preparation -- Scholars will be urged to register with the SCState Career Center. This will ensure that they are prepared to connect with graduate schoolrepresentatives and employers.(c)Academic Mentors – Each scholar will choose an academic mentor from a list of available mentors.This list will include faculty
learning objectives. Also, designemphasis (cognitive objective) and proficiency with 3D-printing processes (skill learningobjective) are reflected in ABET General Criterion 3, Student Outcomes23 (c) “an ability todesign a system, component, or process to meet desired needs within realistic constraints such aseconomic, environmental, social, political, ethical, health and safety, manufacturability, andsustainability” and (k) “an ability to use the techniques, skills, and modern engineering toolsnecessary for engineering practice.” In addition, physical models that provide tactile, visual, andmanipulative feedback to learners have been implemented successfully in general education for along time.The 3D-printing lab includes nine inexpensive 3D
ethics and engineeringscience(1,2,3,4). MEA research uses open-ended case studies to simulate authentic, real-worldproblems that small teams of students address. As part of a collaborative, large-scale NationalScience Foundation project, this paper describes our first efforts to develop MEAs whichincorporate a laboratory or hands-on component.We will explain more about MEAs momentarily, but first wanted to provide more motivationsfor this specific effort. When teaching thermodynamics on the quarter system, we typicallycover the First and Second Laws of Thermodynamics for both open and closed systems in thirty50-minute class sessions. Due to the rushed nature of this class, there are many fundamentalconcepts which do not get the care and
students are required to enroll in a sophomore level introductory engineering course called“Principles of Engineering Analysis and Design” which is a prerequisite to all the 2000 levelengineering courses and as such treated as a gatekeeping course for the engineering program.The course is taught in the third semester with Pre-calculus as the prerequisite. This course iscomparable to any other “Introduction to Engineering” course taught in virtually everyengineering program and covers such topics as career opportunities, survival skills, team work,communications, ethical practices. Our course also reinforce the concepts learned in Algebra andPre-calculus with brief exposure to differentiation and integration, linear algebra, complexvariables and
Medium Medium 7) Creativity N/A N/A 8) Psychomotor Medium Medium 9) Safety High Low 10) Communication High High 11) Teamwork High Low 12) Ethics in the Lab N/A N/A 13) Sensory Awareness Medium Low Figure 1: Experimental apparatus used for the refrigeration experiment. Page 11.113.8 Figure 2: Virtual experiment created to reproduce the data
digital communications. Email: oscarortiz@letu.edu.Dr. Paul R. Leiffer, LeTourneau University Paul R. Leiffer, Ph.D., P.E., is a professor in the School of Engineering and Engineering Technology and Chairman of the Engineering Department at LeTourneau University, where he has taught since 1979. He is the co-developer of LeTourneau’s program in Biomedical Engineering. He received his B.S.E.E. from the State University of New York at Buffalo, and his M.S. and Ph.D. degrees from Drexel University. His professional interests include biomedical signal processing, engineering design, and engineering ethics. c American Society for Engineering Education, 2016 A Radio Controlled Race Car Project to
formultidisciplinary, project-based engineering experience for students at all levels3.The seven major course topics of FECI are measurements, engineering professions, teamwork,problem solving, communication, design process, and safety, professionalism, and ethics. Inaddition, FECI serves as engineering students’ Rowan Seminar course, which is a collegesuccess course and has objectives in writing and critical thinking, library research skills, Page 26.400.2cooperative learning, and classroom management skills. As such, students taking FECI areexpected to learn to take measurements in a laboratory setting, analyze and communicate theresults of those
analysis. Other seminars will be dedicated to professional development issues such as professional ethics & responsible conduct of research, how to be successful in graduate school, career path decision, and effective technical communication. Finally, selected research topics will be given by both participating faculty and other invited speakers to broaden the background of the REU students beyond their own subjects. A list of presenters and seminar topics is included in the Table below. Table 4. REU Weekly Seminar Series Presenters Topics Chiang Shih/Janice Dodge Program orientation/Lab Safety Chiang Shih Responsible
. Students then integrate the non-technical framework from Stages 1-3 and the technical material from Stage 4 within a problem-solving exercise. The exercises necessarily vary across courses, but they share commonelements: hands-on involvement of the student (e.g., through a laboratory or in-class exercise),analysis of real-world data or simulation (e.g., electroencephalograms during a brain-computerinterface), and reflection on ethical or practical issues raised by the data (e.g., whether the dataindicate an acceptable level of performance, given cost constraints). Instructors are urged toconnect their activities to local resources whenever possible (e.g., research laboratories or designfirms). Successful applications will not only make the GC seem
objectives vs others.The experiment gives students exposure to Instrumentation, Models, Experimentation, and DataAnalysis (objectives 1-4 of Feisel and Rosa8). The use of a guitar string as the vehicle forlearning allows the students to develop Psychomotor (the ability to actually touch andmanipulate the device) and Sensory Awareness (objectives 8 and 12, respectively.) The exercisealso helps reinforce “soft skills that are so important in professional practice: Safety,Communication, Teamwork, Ethics (objectives 9 – 12). Tuning, fret positioning, the tone controlcircuit relate to Design (objective 5). Finally, although not intentional, students will sometimesget exposure to objective 6: Learning from Failure. The portability and affordability
thestudents have a hands-on experience with the concepts covered in lecture. EE 302 is broken into two main components. The first component is a survey ofimportant aspects for the Professional Engineer. The topics covered include the following: Different focus areas in electrical and computer engineering Page 22.852.2 Problem solving and the Engineering Design Process Ethical behavior of engineers Responsibilities of the engineer to society Skills for continuing education and independent studyThese topics are covered primarily by a series of short reports completed throughout thesemester. The second component focuses on
problems, design solutions using theirunderstanding, consider the ethical implications of their designs, and interact with the customerthrough verbal and written communication means. Two of these assignments are discussed inthis paper: the design of a force transducer for medical rehabilitation, discussed in detail, and thedesign of an accelerometer based impact measurement system for a package delivery company.Load Cell Transducer MEA ExerciseIn this MEA, teams of two or three students are assigned to work as engineering consultants forthe owner of a fictitious company, “Rehab-o-Rama”, which manufactures physical rehabilitationequipment. The students are given a memorandum from the owner, requesting that the studentsdesign a class of load cell
M Mcontrast ethical and relatedissues in...Program Learning Outcome 4Plan, Integrate and implementmultiple types of Second (2G) I D M Mand Third Generation (3G)wireless...Program Learning Outcome 5Create strategic analysissoftware and tools to develop I D M M Dwireless, networks and serviceplans.Program Learning Outcome 6Develop simulation models ofthe radio component of wireless I D D M Msystems using MATLAB,SIMULINK and...Program Learning
4.42 4.11 ‐1.50 0.15 f) understand professional and ethical responsibility 2.98 3.33 1.00 0.33 g) communicate persuasively, in writing and orally 2.90 3.39 1.39 0.17 h) understand the impact of engineering solutions in global and society context 2.93 4.11 3.68 1E‐04 i) recognize the need for engaging in life-long learning 3.36 4.06 2.27 0.03 j) know and understand contemporary issues 3.19 4.00 2.55 0.02 k) use techniques, skills, and modern engineering tools necessary for
criteria; and (5)to explore the complicated ethical issues regarding the technological advances that blur the boundariesbetween machines and organisms. The development of the undergraduate modules began in year one and was performed by summer in-terns and teams of students in the Junior/Senior Engineering Clinic, under the supervision of the investi-gators. Piloting the modules in undergraduate courses began in year two (the current year of the project),and they will be refined based on our formative evaluation. In the second half of year two and year three,we will continue to use the modules at Rowan while also focusing on dissemination activities such as be-ta-testing at other institutions and G6-12 teacher-training workshops.Artificial Blood
be able to “design a system, component, or process to meet desired needswithin realistic constraints such as economic, environmental, social, political, ethical, health andsafety, manufacturability, and sustainability.”Various methods2 have been discussed by educators to develop student’s conceptions of designthrough undergraduate engineering curriculums. A project-based approach3-11 has beenconsidered as one of the most effective ways and has been implemented in different courses.More specifically, capstone design courses8-11 were notably preferred among these courses. Thiswas because engineering students were required to synthesize their knowledge learned through awhole undergraduate curriculum, and apply their skills in senior designs
includes defining the criteria forevaluating quality sources before they can be used in the learning and applicationprocesses.Due to the broad spectrum and ready accessibility of materials on the Internet, there isalso the ever-present danger of plagiarism. Consequently, the instructor should clearlyexplain the ethical and judicial repercussions of plagiarism. This will hopefully guide thestudents to police their own practices.10 Because OEPs require the students to doindependent study on the subject and to define a unique idea using limited knowledge,another good resource is the US patent database. Because each patent must have at leastone cookbook-type recipe concerning how to implement the idea, this makes patents avaluable source for students
as well as other outcomes that are more distantto the experiments themselves; e.g., teamwork, professionalism and ethics, life-long learning,and especially communications. This paper will describe the process of redesigning a junior-level mechanical engineering laboratory on measurements and instrumentation at Georgia Tech.Such classes are fairly standard in ME curricula, and they are often structured so that a newmeasurement technique, or new sensor/actuator is introduced in every lab. Such courses have theadvantage of introducing students to a wide variety of instruments and measurement techniques,but they do this at the risk of losing conceptual connections between the weekly projects. Thispotential problem was compounded by the original
to 24 students (the standard class size forengineering at Campbell University) and students are often assigned work in pairs or teams of 4.A typical class period will see extended periods of student work on different problems orprojects punctuated by small portions of lecture or classwide discussion. It is expected thatstudents or teams completing the current assignment will assist other students in the class untilall students are done. It is common to see students walking around the room to help otherstudents, which is facilitated by the open layout of the space. With longer class periods and smallclass sizes along with this peer-teaching ethic, it is typical that all students in each section fullycomplete all in-class tasks in a given day
in the biomedical and health sciences • Promoting environments that support innovation, economic growth and development in an ethical and fair context • Supporting communities where Merck employees work and live4Within the Merck Foundation, the Engineering Advisory Committee provides support toengineering schools and engineering-related organizations. Areas in engineering educationfunded by the Engineering Advisory Committee are: • Graduate and undergraduate engineering education in the areas of chemical engineering including biochemical, mechanical, and industrial systems engineering with primary focus on chemical engineering • Curriculum and faculty development focusing on needs of pharmaceutical industry
-Forensic Science (9-11:45) (9:45-10:45) sensors using Tour of -Safety/Ethics Classroom Bring LabQuests, 10-11 MiddleSchool Lab Crystal Growth Bioreactor (9:45-10:45) -Weights and Experiments
.• Professional Skills - Problem solving and managerial skills, positive attitude and motivation, business writing skills, communication skills (internal and external), foreign language proficiency (especially Spanish), respect for cultural differences, leadership and supervision skills; human resources knowledge e.g., organizational measurement), an understanding of marketplace differentiators, a mature work ethic with the goal of advancing professionally.The needs expressed by the industry leaders at the round table are reinforced through peer-reviewedjournal articles, such as those published by Akridge (2004) and Urutyan & Litzenberg (2010)[12, 13].Background Food and foodstuff is a stable industry poised for significant