development, program evaluation, multidis- ciplinary research, and conceptual change. Nadelson uses his over 20 years of high school and college math, science, computer science, and engineering teaching to frame his research on STEM teaching and learning. Nadelson brings a unique perspective of research, bridging experience with practice and theory to explore a range of interests in STEM teaching and learning.Mrs. Anne Seifert, Idaho National Laboratory Anne Seifert EdS INL K-12 STEM Coordinator Idaho i-STEM Coordinator Anne Seifert is the Idaho National Laboratory STEM Coordinator and founder and executive director of the i-STEM network. She holds a BS degree in elementary education, an MA in Education Administration
Paper ID #14110A Hands-On, Arduino-Based Approach to Develop Student Engineering Skillsand Introduce Cybersecurity Concepts to K-12 StudentsMr. Robert Shultz, Drexel University Robert Shultz is a 3rd year Biomedical Engineering PhD student, and a GK-12 fellow at Drexel University.Mr. Daniel Edward Ueda, GRASP Laboratory, University of Pennsylvania Daniel Ueda is the Associate Director for Education and Outreach at the GRASP Laboratory, University of Pennsylvania. He earned a BS in Mechanical Engineering from Rensselaer Polytechnic Institute and a MS in Teaching Mathematics from Pace University. Ueda has worked as a product
explicitly mentioned in thetechnology syllabus.Aim and research questionsThis pilot study is performed within a research project about teachers’ work in technologyeducation. The overall aim of the project is to extend the knowledge about how teachers planand carry out their teaching in accordance with the technology syllabus. Special attention ispaid to how the teaching strategies of technology have been influenced by methodstraditionally used in science studies (excursions, laboratory exercises, etc.) and crafts (designand making activities, with a strong emphasis on the “making” part) and to what extent atradition concerning technology in itself been established.The specific research questions for this study are
Paper ID #11248Production and Characterization of Graphene and Other 2-dimensional Nano-materials: An AP High School Inquiry Lab (Curriculum Exchange)Mrs. Alison Lynn Fielding, Centennial High School, Boise, ID Mrs. Alison Fielding teaches Advanced Placement Chemistry and College Preparatory Chemistry at Centennial High School in Boise, ID. She earned her BS in Earth Science Education from Boise State University in 2013 with a minors in Chemistry. She is currently pursuing a Masters of Science degree in STEM from Boise State University. In an effort to explore new pedagogical approaches she worked with Boise State
Paper ID #12946Curriculum Exchange:Framing Engineering – Templates to aid in instruc-tional designDr. Nancy Ruzycki, University of Florida Director of Undergraduate Laboratories, Faculty Lecturer, Department of Materials Science and Engi- neering Page 26.434.1 c American Society for Engineering Education, 2015Target Grade Level: K-12Designed for: Teachers, Content Coaches, Instructional Specialists, CTE leaders, CurriculumDesignersBackgroundFraming routines are a widely used literacy strategy to support
Technology Mingyu Lu received the B.S. and M.S. degrees in electrical engineering from Tsinghua University, Bei- jing, China, in 1995 and 1997 respectively, and the Ph.D. degree in electrical engineering from the Uni- versity of Illinois at Urbana-Champaign in 2002. From 1997 to 2002, he was a research assistant at the Department of Electrical and Computer Engineering in the University of Illinois at Urbana-Champaign. From 2002 to 2005, he was a postdoctoral research associate at the Electromagnetics Laboratory in the University of Illinois at Urbana-Champaign. He was an assistant professor with the Department of Elec- trical Engineering, the University of Texas at Arlington from 2005 to 2012. He joined the Department
Paper ID #13609Engineering Everyday Discovery Program: Motivating Middle School Chil-dren Interest in STEMDr. Rosalyn Hobson Hargraves, Virginia Commonwealth University Dr. Rosalyn Hobson Hargraves holds a joint appointment in the Schools of Education and Engineering as Associate Professor of Teaching and Learning and Associate Professor of Electrical Engineering at Virginia Commonwealth University. She received her B.S., M.S., and Ph.D. degrees in Electrical En- gineering from the University of Virginia. Her research interests are in STEM education, biomedical signal and image processing, and machine learning. She has been
Paper ID #12136An integrated, blended online engineering program of college-level coursesfor high school students offered by a state-wide public STEM magnet schoolDr. Michael Andrew Albright, South Carolina Governor’s School for Science and Mathematics Michael Albright teaches English for the Accelerate program at the South Carolina Governor’s School for Science and Mathematics. He received his Ph.D. in English literature in 2013 from Lehigh University in Bethlehem, PA where he taught first-year composition to primarily engineering students as a graduate student. Albright specializes in drama of the early modern/Renaissance era
component in the curricula we develop, and final projects must involve some form of discrete circuit component. • We have emphasized the concepts of sensors, signals, and signal processing when teaching programming and electronics. Many labs, homework exercises, and activities involve interpreting signals generated by using sensors and circuits of the student’s creation, interpreting those signals using programming, and making design decisions based off of those interpretations. • All laboratory exercises in the first half of the courses are designed to be carried out in groups of two or three, and be significantly open-ended (see Tables 1, 2, and 3). This prepares students for the open-ended
, such ashardware layouts and programming techniques. On the laboratory days, they applied andreinforced the learned knowledge through hands on experiments, such as building the robotframe, writing code in embedded C program and so on. By teaching in this manner the coursedoes not only focus on the traditional lecture style of teaching, but allows the material to reachstudents with different learning preferences. A few challenges were also incorporated into thecourseware, such as building a robot chassis and then requiring students to improve it bymounting sensors with only a limited amount of parts and time. This forced them to useinnovation and creativity in their design process. The culmination of the course was a final
physical science and is a National Board Certified Teacher now studying novice teachers’ decisions based on the design and implementation of their teaching practices. Page 26.1248.1 c American Society for Engineering Education, 2015 Preparing Pre-service Teachers to Make Connections Between Science and Engineering Concepts Through Teamwork with Engineering Students (RTP, Strand 1)AbstractNGSS has called for the inclusion of engineering in K-12 classrooms. This has shifted
Engineering Outreach and Professor in the Department of Biomedical, Chemical and Environmental Engineering at the University of Cincinnati (UC), Cincinnati Ohio, USA. He joined UC on 8/15/00 and before that worked 22 years at University of Oklahoma. He teaches structural mechanics, with research in steel structures, seismic analysis and design, and engineer- ing education. He has won five major university teaching awards, two Professorships, two national ASEE teaching awards, and is internationally recognized in his primary research field.Ms. Julie Steimle, University of Cincinnati Julie Steimle received her Bachelor of Arts in English and Secondary Education from Thomas More College. She served as development director and
thisas a pedagogical approach for teaching statistics.Science and engineering educators make similar recommendations for developing dataanalysis skills in applied settings. Bybee15 argues that “planning and carrying outinvestigations should be standard experiences in K-12 classrooms” (p. 36), and Hofsteinan Lunneta16 found that the literature consistently supports these kinds of tasks saying,“well-designed science laboratory activities focused on inquiry can provide learningopportunities that help students develop concepts” (p. 47). However Hofstein andLunneta did also note that the success of this approach is highly dependent on the natureof the task itself and recommended that more research be done into identify thecharacteristics of tasks
Paper ID #12036Evaluation of RepRap 3D Printer Workshops in K-12 STEMDr. John L. Irwin, Michigan Technological University As Associate Professor for Mechanical Engineering Technology since 2006 at Michigan Technological University, Dr. Irwin teaches courses in Product Design & Development, FEA and CAE Applications, Parametric Modeling, and Computer Aided Manufacturing. Research interests include STEM education, where as PI for Improving Teacher Quality grants (2010 & 2013) he has developed and implemented professional development courses for K-12 science teachers to implement inquiry-based learning while
Paper ID #12024Using Robotics as the Technological Foundation for the TPACK Frameworkin K-12 ClassroomsAnthony Steven Brill, NYU Polytechnic School of Engineering Anthony Brill received his B.S. degree in Mechanical Engineering from the University of Nevada, Reno, in 2014. He is currently a M.S. student at the NYU Polytechnic School of Engineering, studying Me- chanical Engineering. He is also a fellow in their GK-12 program, promoting STEM education. He conducts research in the Mechatronics and Controls Laboratory, where his interests include controls and multi-robot systems.Dr. Jennifer B Listman, NYU Polytechnic School
workforce demands. Theconcern rises from the abundance of STEM-related employment, a lack of qualifiedindividuals to fill those positions, and the fact that STEM technologies and productionplay an invaluable role in national and global economies, [4][5]. For the reasons mentioned above, significant funding, time, and resources, havebeen invested in the United States with the intent of sparking STEM interest amongyoung citizens. For example, in STEM outreach, there is a myriad of programs andactivities just within the field of robotics and automation. Examples of these type ofprograms include: FIRST, LEGO Mindstorms, VEX Robotics, MATE, SeaPerch,OpenROV, etc. Robotics is often chosen as a method to teach a broader version of STEM
, respectively from Purdue University. Her work centers on P-16 engineering education research, as a psychometrician, program evaluator, and institutional data analyst. As a psy- chometrician, she revised the PSVT:R for secondary and undergraduate students, developed the TESS (Teaching Engineering Self-efficacy Scale) for K-12 teachers, and rescaled the SASI (Student Attitudi- nal Success Inventory) for engineering students. As a program evaluator, she has evaluated the effects of teacher professional development (TPD) programs on K-6 teachers’ and elementary students’ attitudes to- ward engineering and STEM knowledge. As an institutional data analyst, she is investigating engineering students’ pathways to their success
, instrument development, psychometrics and statistical programming.Dr. Howard S. Kimmel, New Jersey Institute of Technology HOWARD KIMMEL is Professor-Emeritus of Chemical Engineering and Retired Executive Director of the Center for Pre-College Programs at New Jersey Institute of Technology. Dr. Kimmel is currently providing his services on a part-time basis as a Special Assistant for Teacher Training and Curriculum Development with a focus on alignment of teaching practices with the Common Core State Standards and the Next Generation Science Standards. He has spent almost forty years designing and implementing professional development programs, curricula, and assessment of student learning for K-12 teachers in STEM. At
Engineering and is presently completing her M.S. in Aerospace Systems Engineering.Dr. Morgan M Hynes, Purdue University, West Lafayette Dr. Morgan Hynes is an Assistant Professor in the School of Engineering Education at Purdue Univer- sity and Director of the FACE Lab research group at Purdue. In his research, Hynes explores the use of engineering to integrate academic subjects in K-12 classrooms. Specific research interests include design metacognition among learners of all ages; the knowledge base for teaching K-12 STEM through engi- neering; the relationships among the attitudes, beliefs, motivation, cognitive skills, and engineering skills of K-16 engineering learners; and teaching engineering
, Davis where he has helped author a comprehensive curriculum intended to teach 3D modeling skills to K- 12 students. He is an active member of the UC Davis C-STEM Center and has designed numerous educational accessories for use with the modular Linkbots produced by Barobo Inc.Prof. Harry H. Cheng, University of California, Davis Dr. Harry H. Cheng is a Professor in the Department of Mechanical and Aerospace Engineering, Grad- uate Group in Computer Science, and Graduate Group in Education at the University of California, Davis, where he is also the Director of the Integration Engineering Laboratory (http://iel.ucdavis.edu). He founded and directs the UC Davis Center for Integrated Computing and STEM Education (C-STEM
Paper ID #11969Novel Approach to Developing and Implementing Curriculum in a 2-WeekHigh School Summer Engineering Experience (Work in Progress)Ms. Lauren Redfern, Duke University I am a second year doctoral student in Civil and Environmental Engineering at Duke University. I have a B.S in Biological Engineering from the University of Florida and a passion for K-12 Engineering.Mrs. A. Leyf Peirce Starling, North Carolina State University Leyf Peirce Starling received a Bachelor of Science in Mechanical Engineering from the University of Virginia in 2003 and a Master of Arts in teaching with a focus on Special Education from UNC
tools and application and having also total quality management diploma and being quality master holder dealing with all quality systems as documentation , CAPA management , RCA , facility maintenance and also ISO 9000/2008 expert in addition to being certified from Bernard Castle in UK as sterile area facility Design expert as per ISO regulations . Egyptian pharmacist graduate of 2007 who started my career as a research and development pharmacist in SEDICO pharmaceuticals in EGYPT for about 2 years dealing with new dosage forms formulation and then rotated to Methodology and stability department in which i dealt with dosage form analysis and innovation of new methods of analysis dealing with all laboratory
dissertation ”Changing the Learning Environment in the College of Engineering and Applied Science: The impact of Educational Training on Future Faculty and Student-Centered Pedagogy on Undergraduate Students” was the first of its kind at the university. Whitney has been recognized by the National Technical Association (NTA) for her novel approach to studying students, specifically underrepresented minorities and women. Whitney also works with the Emerging Ethnic Engineers (E3) Program. She teaches Calculus 1 during the Summer Bridge program and instructs Cooperative Calculus 1 during the school year. Continuing with her commitment to community involvement, Whitney has previously served on the Na- tional Executive Board
Paper ID #12025A Robotics-Focused Instructional Framework for Design-Based Research inMiddle School ClassroomsMr. Matthew Moorhead, NYU Polytechnic School of Engineering Matthew Moorhead received his B.S. degree in Mechanical Engineering from the University of Nevada, Reno, in 2014. He is currently pursuing a M.S. degree in Mechanical Engineering at NYU Polytechnic School of Engineering, Brooklyn, NY, where he is a teaching fellow in their GK-12 program. Matthew also conducts research in the Mechatronics and Controls Laboratory with an interest in robotics and controls.Dr. Jennifer B Listman, NYU Polytechnic School of
Paper ID #11777Designing a Multimedia Learning Environment that Engages Children ThroughNarrativeDr. Glenn W Ellis, Smith College Glenn Ellis is a Professor of Engineering at Smith College who teaches courses in engineering science and methods for teaching science and engineering. He received a B.S. in Civil Engineering from Lehigh University and an M.A. and Ph.D. in Civil Engineering and Operations Research from Princeton Univer- sity. The winner of numerous teaching and research awards, Dr. Ellis received the 2007 U.S. Professor of the Year Award for Baccalaureate Colleges from the Carnegie Foundation for the Advancement
teaching methods for pre-service and in-service teachers. He is the director of City- Lab, a biotechnology learning laboratory for K12 students and teachers at Boston University School of Medicine and a former high school science teacher. He co-authors Teaching Children Science: a Discov- ery Approach written as a textbook for pre-service elementary science teachers. Page 26.1050.1 c American Society for Engineering Education, 2015 K-12 Teachers as Curriculum Designers in Engineering Professional Development
theclassroom. 3,4 Coherence is the extent to which teacher learning is consistent with teachers’knowledge and beliefs. 5, 6 Gess-Newsome et al. 7 described these beliefs as a “personal practicaltheory” of teaching in which the teachers’ experiences and philosophies dictate an image of howteaching and learning in their classrooms should look (p. 758). Moreover, ignoring teachers’knowledge and beliefs can be perceived as a threat to a teacher’s expertise and his/her ability toengage students in meaningful learning. 8, 9 Effective PD accounts for the fact that meaningfulinstructional change takes time and that increased duration of PD leads to positive changes inteacher knowledge and practices. 1, 2, 10 In fact, the quantity of time a teacher spends
investigates the integration of engineering in science classes to facilitate physics learning. - Mike is senior personnel for another NSF project, AMP-IT-UP, that is studying STEM integration. He designs curriculum, PD, and strategy for the project. - Mike is active in designing and researching online learning courses in PBL for educators. Mike has also previously taught secondary science in public schools.Mr. Jeffrey H Rosen, Georgia Institute of Technology After 14 years in the middle and high school math and engineering classroom where Mr. Rosen was working on the integration of engineering and robotics into the teaching of the core curricula classrooms. He has now been at Georgia Tech’s CEISMC for the past 8 years
science of hair. In our first year of the camp, we devised a lesson onrace and hair to help students think about the ways their ancestry and cultural conditioninginfluenced their hair texture and hairstyle choices. We knew the girls would be using an AFMmicroscope as part of the hands-on learning at the camp, thus combining a conversation aboutrace and ancestry with the ability to observe differences in hair under the microscope would helpstudents connect social issues with laboratory methods. As the GAMES girls tend to be abouttwo thirds white, we also thought introducing small group and intergroup interaction would be animportant way to engage on this topic12.We began the lesson, led by Dr. Kathryn Clancy, with a discussion question: What do
quality, accessibility and breadth.Engineering education has lagged behind other fields in adapting online teaching methodologies (10, 11, 12, 13) . Reasons for this lag include the Five Pillars of Quality Online Learning need for hands on engineering experiences in laboratories with often expensive equipment and substantial computing power (10). Until recently, this type of computer power was not Effectiveness