national ASEE teaching awards, and is internationally recognized in his primary research field.Dr. Temesgen Wondimu Aure, University of Cincinnati TEMESGEN W. AURE, Ph.D., is the STEM Program Coordinator working under Dr. Kukreti on the NSF Type 1 STEP and S-STEM Projects in the Department of Biomedical, Chemical and Environmen- tal Engineering at the University of Cincinnati (UC), Cincinnati, Ohio, USA. Temesgen joined UC as a graduate student in 2008 Fall and completed his doctoral degree in Civil Engineering in 2013. He started working on his current position at UC in January 2014. He plans, designs, evaluates and modifies pro- grams supported by the NSF Type 1 STEP and S-STEM Grants in the College of Engineering and
Early Career Engineers’ Views of Ethics and Social Responsibility: Project OverviewIntroductionDespite recommendations from leading stakeholders for increased attention to ethics inengineering education [1, 2], a growing body of anecdotal and empirical evidence suggests acontinuing lack of serious attention to ethics, social responsibility, and related topics in mostengineering degree programs [3-5]. To address this, organizations like the National Academy ofEngineering have taken steps to identify best practices and exemplary programs as “a resourcefor those who seek to improve the ethical development of engineers at their own institutions” [6].Recent research in engineering ethics has also aimed to measure
values, self-efficacy and identity. The results provide strong cross-sample evidence of the reliability andvalidity of each of the measures. The results of the multi-model comparative analysis did notfully support the hypothesis (H4), regarding how these constructs may combine to driveengagement in extracurricular engineering-related activities. However, we do find partialsupport for it. Namely, past research [2], found that engineering values operates as a distalmotivator of engagement in engineering-related activities, and the results presented here do notcontradict this finding. Instead they offer a revised model that includes both engineering valuesand identity as distal drivers of engagement with and intervening impact of student self
received for the best paper published in the Journal of Engineering Education in 2008, 2011, and 2019 and from the IEEE Transactions on Education in 2011 and 2015. Dr. Ohland is an ABET Program Evaluator for ASEE. He was the 2002–2006 President of Tau Beta Pi and is a Fellow of the ASEE, IEEE, and AAAS.Dr. Misty L. Loughry, Crummer Graduate School of Business at Rollins College Misty L. Loughry, Ph.D. is a Professor of Management in the Crummer Graduate School of Business at Rollins College. She studies peer control, peer evaluation, and teamwork. She earned her Ph.D. from University of Florida.Dr. David J Woehr, U. of North Carolina Charlotte David J. Woehr is currently Professor and Chair of the Department of
packaging and soil remediation. She also completed an REU project in the area of healthcare engineering at the University of Wisconsin- Madison. Shaylin is currently pursuing a Ph.D. in Engineering Education at Mississippi State University. She is working on a partnered longitudinal study researching how varying first-year experiences (FYE) structures affect students’ engineering identities and involvement in communities of practice. Shaylin is interested in figuring out what contributes to engineering students getting the most out of their undergraduate programs and how programs can be better designed to cater to those needs.Abigail M Clark, Ohio State University Abigail Clark is a Ph.D. candidate in the Department of
of2018. At the conclusion of the course, the attendees were asked to complete a course evaluationthat consisted of both Likert-scale questions and open ended questions. The Likert-scalequestions were tabulated using a five-point scale (1 - Strongly Disagree, 2 - Disagree, 3 - NeitherAgree nor Disagree, 4 – Agree, and 5 - Strongly Agree). These questions are shown below.• Likert-scale Course Evaluation Questions o Course materials are very well designed and organized o The course materials are very hands-on and relevant to my job o I feel like I learned a lot about “module name” best practices through this session o I would like to attend more “module name” educational sessions to enhance my knowledge• Open Ended
Research Business Center. p. 8-‐10. 16. Food Processing, in http://www.chooseneindiana.com/, Northeast Indiana Regional Partnership. 17. Gambale, G., Top States for Doing Business: A Survey of Site Selection Consultants Area Development Online: Site and Facility Planning, 2010(http://www.areadevelopment.com/siteSelection/sept2010/top-‐states-‐doing-‐ business39016.shtml). 18. Handel, S.J., Silent Partners in Transfer Admissions. Chronicle of Higher Education 2010. 19. Wiggins, G. and J. McTighe, eds. Understanding by Design. ed. M.P. Hall. 2001: Upper Saddle
development of assets-based SVSMawareness training for university faculty, staff, and administrators. This work requires them todive into the literature to understand best practices in SVSM awareness training and allyship(e.g., Dillard & Yu, 2016, 2018). Additionally, the undergraduate researchers are continuing thework of expanding the narrative literature review on SVSM in public engineering programspublished/presented at the 2022 ASEE Annual Conference [20] into a systematic literaturereview suitable for a journal publication. Both undergraduate researchers are also active inquantitative and qualitative in data collection and/or analysis for two collaborative projects, withveteran studies scholars from other institutions (i.e., school names
2022-2023 academicyear, a pilot decision matrix will also be developed to aid faculty and instructors to furtherpromote and support the implementation of inclusive practices in engineering classrooms. Thecontinued refinement of the menu and creation of both the website and decision matrix are thenext steps in the development of an inclusive classrooms toolkit that can be used across allengineering classrooms and curriculums.Introduction and Background Minoritized and underrepresented students have historically experienced prejudice anddiscrimination within and outside of their classrooms, negatively impacting their educationaloutcomes. In 2018, the National Student Clearinghouse Research Center reports that in terms ofcollege
of sustainability are integrated withexisting topics (rather than stand-alone) such as energy and water quality further widens this gapbetween environmental and social/economic concerns, making it clear that, at the present time,sustainability education in engineering is dominated by the environmental pillar of sustainability.A broader scope in sustainable practice is beginning to emerge in numerous programs thatimplement sophisticated and more comprehensive sustainability programs and certificationprograms. However, these programs are at the graduate level and are often not designed for orare unable to accommodate the high numbers of undergraduate students who co-exist with thesegraduate programs.14, 15, 16, 17 Without a doubt, more efforts
of highly trained, minority STEMeducators. This work describes an INCLUDES Design and Development Launch Pilot thatbuilds on an existing regional partnership of four Historically Black Colleges and Universities(HBCUs) that are working together to improve STEM outcomes for middle school minority malestudents.Using collective impact-style approaches such as implementing mutually reinforcing activitiesthrough a Network Improvement Community (NIC) these partners are addressing the larger goalof improving STEM achievement in minority males, particularly in middle school. Activities ofthe NIC included a workshop to share best practices and define the NIC, workgroups to engagein improvement cycles, a website that will contribute to the knowledge
questions: 1. How can participation in a faculty learning community (FLC) enable or nudge engineering faculty to adopt and personalize mindful reflection and best practices? 2. How and to what degree does faculty participation in an FLC impact engineering college culture? 3. To what degree does faculty participation in an FLC impact engineering student belonging and success?To create the FLC, at least two faculty members were recruited from each of five departments.Together with the principal investigator (PI) team, the FLC has around 15 members. In addition,one research assistant and one or two evaluators usually attend sessions. The FLC meets once permonth for eight months during the academic year, on Friday mornings, a time
University of San Diego. She received a BS from Cornell University in Materials Science and Electrical Engineering (EE) and MS and PhD in EE from Stanford University. Her research focuses on the study and promotion of equity in engineering including student pathways and inclusive teaching. She has won best paper awards from the Journal of Engineering Education, IEEE Transactions on Education, and Education Sciences. Dr. Lord is a Fellow of the IEEE and ASEE and received the 2018 IEEE Undergraduate Teaching Award. She is a coauthor of The Borderlands of Education: Latinas in Engineering. She is a co-Director of the National Effective Teaching Institute (NETI).Scarleth Vanessa Vasconcelos, Villanova University
Paper ID #17281Unique Potential and Challenges of Students with ADHD in Engineering Pro-gramsDr. Arash Esmaili Zaghi P.E., University of Connecticut Dr. Arash E. Zaghi received his PhD in Civil Engineering from the University of Nevada, Reno, where he worked on the seismic behavior of novel bridge column and connection details. After graduating, he stayed with UNR as a Research Scientist to overlook two major research projects involving system-level shake table experiments. In 2011, Dr. Zaghi joined the Department of Civil and Environmental Engi- neering at University of Connecticut as an Assistant Professor. His research
engineeringeducation culture while also presenting a valuable and unique opportunity for engineeringeducation researchers and faculty developers to make significant practical impact. However,seizing this opportunity has been difficult, and the development of an inclusive culture hascontinued to elude traditional educational research approaches. While quantitative methods canbroadly identify the presence and prominence of marginalized inclusion, they often lack thedepth needed to foster a comprehensive understanding of inclusion. In contrast, qualitative andnarrative-based approaches offer rich accounts of marginalized experiences and perspectives butstruggle to reach a broad faculty audience. Dissemination approaches for engineering educationresearch
student evaluations of instruction, and support student learning. This activity advancesthe knowledge of learning communities within the context of higher education and facultydevelopment by integrating it with the use of educational technology and social reflexivity'ssupport of diffusion. The evaluation and research projects are yielding a measure of the rate ofdiffusion of research-based instructional practices and findings related to the impact that peerfeedback has on student learning through direct assessments used for program accreditation,general education assessments, and student end-of-term evaluations.The overriding goal of the project is to enhance teaching and learning in engineering coursesthrough an annotated video peer-review
. Thistechnology is becoming a common practice in discrete part manufacturing industries. Studentswill measure the effects of the thermal status of the machine tool on the machining accuracy ofthe machine tool. Student teams conduct experiments to check calibration of the machine toolsusing Ballbar & LaserXL80 calibration equipment purchased through the NSF grant. Web-basedinteractive instructional modules and tutors are developed for each sensor and equipment usedfor course. MET204 & ET635 (graduate level). Quality Control topics at graduate andundergraduate level focus on the information technology aspect of the proposed project. Studentswill use design of experiments to investigate the effects of the cutting conditions on part
Year ward, 2012 ©American Society for Engineering Education, 2023 Building a Sustainable Institutional Structure to Support STEM Scholars – Work-in-ProgressIntroductionThis paper describes preliminary findings and outcomes from a five-year, NSF-sponsored project(Award #1565066) at Purdue University Fort Wayne to increase the number of students whocomplete engineering, engineering technology, and computer science degrees [1]. The objectivesof this project are to (a) increase graduation rates of the STEM cohorts; (b) build the foundationfor a sustainable institutional structure and support STEM scholars and other students; (c) carryout research designed to advance understanding of the
calculated in each frame and passedthrough all the VQ codebooks. A soft decision approach to generate the SNR estimate asdescribed in [1] is used. The codebooks with the three best scores are selected. Based onthese scores, a weighted linear combination of the SNR estimates corresponding to thesethree codebooks determines the final SNR estimate. This is known as a soft decisionapproach [1].The student research team implemented the VQ based system and a similar system basedon a Gaussian mixture model (GMM) classifier. For this case, a GMM model for eachSNR value is designed using the Expectation-Maximization (EM) algorithm [9][10]. Inachieving this implementation, students gain much insight into the concepts ofprobability and random variables. The
Paper ID #21292Teach-Flipped: A Faculty Development MOOC on How to Teach FlippedDr. Cynthia Furse, University of Utah Dr. Cynthia Furse (PhD ’94) is the Associate Vice President for Research at the University of Utah and a Professor of Electrical and Computer Engineering. Dr. Furse teaches / has taught electromagnetics, wireless communication, computational electromagnetics, microwave engineering, circuits, and antenna design. She is a leader and early developer of the flipped classroom, and began flipping her classes in 2007. She is now regularly engaged helping other faculty flip their classes (see Teach-Flip.utah.edu
manufacturing and materials. This paper willdiscuss the lessons learned from managing and facilitating a collaborative program. It will alsodiscuss how this program was able to leverage regional assets to provide a deep and meaningfulexperiential learning opportunity for the participants. Finally, it will discuss how the participantswere guided through a process to develop curriculum that connected their experiences andemployed research based best practices for encouraging underrepresented populations to pursueengineering.INTRODUCTION Global competitiveness in future manufacturing will depend upon the maturation andadoption of advanced manufacturing technologies. These technologies include robotics [1],artificial intelligence [2], 3D printing
students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering fos- ter or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S. in Chemical Engineering and Ph.D. in Engineering and Science Education. Her research c American Society for Engineering Education, 2020 Paper ID #29196earned her a National Science Foundation CAREER Award focused on characterizing latent diversity,which includes diverse attitudes, mindsets, and approaches to learning, to understand engineering stu-dents
assessment; evidence- based teaching practices and curricular innovations applied to misconceptions; and engineering education policy. His research explores the nature of global competency development by assessing how interna- tional experiences improve the global perspectives of engineering students. His dissertation investigates how best to design and operationalize effective global programming strategies within engineering curric- ula.Dr. Gisele Ragusa, University of Southern California Gisele Ragusa is a Professor of Engineering Education at the University of Southern California. She conducts research on college transitions and retention of underrepresented students in engineering and also research about
will bring new excitement toeducation by introducing reconfigurable electronics with a new world of possibilities for studentprojects, such as robot competitions, video game design, embedded systems and more. Finally,the project will develop industry, K-12 and university partnerships to facilitate pathways tocareers in the exciting field of reconfigurable electronics for first-generation, minority and otherunder-served populations, including veterans. In summary, this project will provide the trainingand educational resources and promote best practices for community college, university, andhigh school instructors to enable them to teach new hardware technologies to a broad range ofstudents, including those who have not previously had access to
learning works best for them. Whenpresented with a problem, they are equipped to quickly identify which style of learning andtechnique(s) best apply to the situation enabling them to address problems in a timelier manner.While metacognition and SDL skills sets can be applied to familiar problems, they also providevalue in approaching unfamiliar problems. IRE alumni consistently reported earning confidencefrom peers and supervisors through a versatile ability of routinely solving unfamiliar problemsmaking the alumni valuable workplace assets.Future Directions and SignificanceWe have identified three areas of research we intend to pursue. First, we will continue totriangulate the think-aloud data with students’ self-report interview data but on an
Engineering and Management from Virginia Polytechnic Institute and State University. Her educational research interests are focused on improving construction management education.Dr. Ross A. Perkins, Boise State University Dr. Perkins is an associate professor in the Department of Educational Technology at Boise State Uni- versity, where he also serves as the coordinator of the department’s Ed.D. program. His research inter- ests include the diffusion and adoption of technologies and innovations for education, mobile learning, instructional design for distance education in STEM and other disciplines, and ICT integration in devel- oping nations. He is the Co-PI on two grants funded by the National Science Foundation
Paper ID #25962Board 12: CAREER: Characterizing Latent Diversity Among a NationalSample of First-Year Engineering StudentsDr. Allison Godwin, Purdue University-Main Campus, West Lafayette (College of Engineering) Allison Godwin, Ph.D. is an Assistant Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering fos- ter or hinder belongingness and identity development. Dr. Godwin graduated from Clemson University with a B.S
success or failure for graduates when they enter theworkforce. As an example, project management skills are often neglected in an engineering orscience curriculum, requiring additional training for those engineers who end up in managementpositions. Skills such as the ability to lead and work effectively as a member of a team arefrequently identified as critical to the success of an engineer, but typically are lacking in newengineering graduates. 1 This article presents some information on impact of the NSF S-STEMon development of students’ professional skills.IntroductionSoft skills are important components of both industry and organizations. While soft skills aremajor components of industry core requirements, the students attending higher
Paper ID #41920Board 432: Work in Progress: Immersive, Hands-On, and Interactive QuantumInformation Science and Technology: Empowering Undergraduate Studentsin Quantum ComputingMr. Syed Hassan Tanvir, University of Florida Syed Hassan Tanvir is a doctoral candidate in Engineering Education at the University of Florida. He holds a bachelor’s degree in Computer Science and a Master’s in Software Engineering. His research is focused on investigating the factors that influence engineering undergraduate enrollment, retention, graduation, and dropout. For his Ph.D., he plans to incorporate stealth assessment techniques to foster
,and employing predictive analytics. Major goals of the project included developing expertise inusing a student dashboard and integrating student data, with the potential broad impact ofinforming the STEM community of best practices for timely interventions, improving retentionand graduation rates, and facilitating career development. The Navigate platform is used for predictive analytics and to track and document ECS Scholarprogress toward achieving benchmark goals in the areas of retention, graduation rates,internships, undergraduate research experiences, and job placement. The use of predictiveanalytics has significant potential for helping students arrive at successful outcomes. However, itis an assumption of this project that the