AC 2012-4369: CAPSTONE DESIGN HUB: BUILDING THE CAPSTONEDESIGN COMMUNITYDr. Marie C. Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co-directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on communi- cation in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from NSF to study expert teaching practices in capstone design courses nationwide, and is Co-PI on several NSF grants to explore design education. Her work includes studies on the teaching and learning of communication in capstone courses, the effects of
. were completed at Vanderbilt University, and his B.S.Ch.E. at the University of Alabama. Silverstein’s research interests include conceptual learn- ing tools and training, and he has particular interests in faculty development. He is the recipient of several ASEE awards, including the Fahein Award for young faculty teaching and educational scholarship, the Cororan award for best article in the journal Chemical Engineering Education (twice), and the Martin award for best paper in the Ch.E. Division at the ASEE Annual Meeting. Page 25.1446.1 c American Society for Engineering
Design gives the instructors and students the opportunity to study a new technology or mission concept in great detail. (At a previous institution, one author covered topics such as solar sails and fractionation.) It is offered only according the research/teaching needs of the faculty and student interests.2.1 Space Systems Research Laboratory (SSRL)The Space Systems Research Laboratory is led by one author; the affiliated faculty include theother author and faculty of the Electrical Engineering department. SSRL has a research focus onthe design, fabrication and operation of low-cost spacecraft architectures and technologies. SSRLfaculty were involved in the design, fabrication and launch of the Sapphire satellite,4
7 3% 4%Table 2 shows the employment categories of the respondents. The mismatch between Educatorand College employed is 69 to 91, but a similar ratio has been seen before and can be explained Page 25.1276.3by non-teaching College employees doing administration and outreach activities. Thedistribution of responses indicates a strong presence of opinions from manufacturers.Table 2 - Responses to ‘Your Employer’Your Employer No. % 2012 % 2011College or University 91 43% 45%K-12 School
and an exit survey related to the tasks completed during the drivingsimulator laboratory activity. The teaching assistants administered both surveys online, in thedriving simulator laboratory, immediately after the completion of the task.The entry survey started with an assessment question that asked students to rate the three curvesin terms of the quality of their design using a three-level scale that included following options:“Bad design,” “Decent design,” and “Good design.” An open-ended question followed this firstassessment item and asked students to explain concisely the differences between the best and theworst designs they experienced on the virtual vertical alignment. The goal of this secondquestion was to collect some qualitative
. Topics in Cognitive Science 2009;1(1):73-105.23. Chickering AW, Gamson ZF. Applying the seven principles for good practice in undergraduate education. San Francisco, CA.: Jossey-Bass Inc.; 199124. Balamuralithara B, Woods PC. Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education 2009;17(1):108-18.25. Strategies to Incorporate Active Learning into Online Teaching. Available from: http://www.icte.org/T01_Library/T01_245.pdf.26. Winne PH. Experimenting to bootstrap self-regulated learning. Journal of Educational Psychology 1997;89(3):397-410.27. Butler DL, Winne PH. Feedback and self-regulated learning: A theoretical synthesis. Review of Educational
. Sekhar’s primary teaching and research focus is in the areas of biomedical and process control instrumentation and clinical engineer- ing.Dr. Jai P. Agrawal, Purdue University, Calumet Jai P. Agrawal is a professor in electrical and computer engineering technology at Purdue University, Calumet. He received his Ph.D. in electrical engineering from University of Illinois, Chicago, in 1991, dissertation in power electronics. He also received M.S. and B.S. degrees in electrical engineering from Indian Institute of Technology, Kanpur, India, in 1970 and 1968, respectively. His expertise includes analog and digital electronics design, power electronics, nanophotonics, and optical/wireless networking systems. He has
MEPdrawings are then highlighted and the procedures for their analysis are presented in a systematicorder including the differentiating aspects of various systems. The laboratory portion of themodule concentrates on performing quantity takeoff, digital or manual, where the results aretranslated into work scope sheets. The paper further explains the detailed scope identificationmethodology for each system and their integration into estimating course context.IntroductionConstruction science and management graduates are expected to work in a dynamic workenvironment performing various tasks including planning, estimating, scheduling, and managingthe construction process. The graduates are also expected to be familiar with work scopes for allconstruction
math and engineering courses, contextualized teaching approaches thatincorporate NASA-related content as hands-on activities and projects are developed. A ten-weeksummer research internship program specifically designed for community college students hasalso been developed to provide research opportunities on various engineering topics includingperformance-based earthquake engineering, circuit design for biomedical applications, andembedded systems design. Additionally, a group of community college students are selected toparticipate in year-long upper-division and senior design courses at San Francisco State Universityto help develop skills and attributes needed to succeed in a four-year engineering program. Resultsfrom the first year of
often aconsequence of our reaction to failures1. Hazard analysis which relies on engineering practiceand judgment to identify, classify, and manage risk has continued to have an important role inforeseeing and preventing critical system failure2, 3 . Failure’s role in engineering; including itsvalue in design, design revisions and failure as a source of engineering judgment has beenstudied4, 5. The continued failure of important complex systems has led to assess the question asto how the systems fail despite everything thought to be necessary in the way of process beingdone6.Several engineering curriculums do offer courses based on either laboratories or case studies tounderstand the importance of failures in design as a teaching aid7, 8, 9, 10
AC 2012-3017: DISTRIBUTED COLLABORATIVE DESIGN AND MANU-FACTURE IN THE CLOUD - MOTIVATION, INFRASTRUCTURE, ANDEDUCATIONDr. Dirk Schaefer, Georgia Institute of Technology Dirk Schaefer is an Assistant Professor at the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. Prior to joining Georgia Tech, Schaefer was a Lecturer in the School of Engineering at Durham University, UK. During his time at Durham, he earned a Postgraduate Certificate in ”Teaching and Learning in Higher Education.” He joined Durham from a Senior Research Associate position at the University of Stuttgart, Germany, where he earned his Ph.D. in computer science. Over the past 10 years, Schaefer has been
focus in mathematics and science. Silvaggio partners with the National Renewable Energy Laboratory and Colorado School of Mines during the summer creating and teaching ”The Science of Energy” for Colorado Educators. Page 25.603.1 c American Society for Engineering Education, 2012 Exchange: Mouse Wheel Generator Through the Bechtel K-5 Educational Excellence Initiative, the Colorado School of Mines isworking with kindergarten through fifth grade (K-5) teachers to increase their competence andconfidence in mathematical and scientific content, in the use of
shown in Figure 3. This finalexercise is then used directly in lab in a following class period. Figure 1: Photograph of experimental setup for the final tutorial exercise. Page 25.377.4Figure 2: LabVIEW block diagram for the final tutorial exercise Page 25.377.5Figure 3: LabVIEW Front Panel for the final tutorial exercise.Results and DiscussionThe self-guided tutorial was used in the Fall 2010 semester to teach LabVIEW in twoundergraduate courses, ME351 (Mechanical Systems Laboratory) and ME443 (Systems andMeasurement). ME351 was comprised of mostly juniors
. Page 25.233.2Supto1 taught for many years as an adjunct and humorously describes how adjuncts can betreated as a “pet rock” which is a near-perfect low-maintenance pet. Adjuncts typically are “offthe radar screen” of the Dean and Chair, hence receive minimal feedback except from students intheir classes. Adjuncts often have little authority to improve the laboratory/class they teach andmay not be included in curriculum decisions. Supto recommends that “every adjunct shouldhave a full-time faculty member assigned as an advocate and resource” but this often isn’t thecase1. Adjuncts are often left to fend for themselves.Departments and faculty may want to do an excellent job of teaching undergraduates, yet it isoften the lack of resources and not
for research and graduate studies for the College of Technology (2009-2010) and returned to full-time faculty in fall 2010. He was Director of the Center for Technology Literacy (2006-2010), and a member (2006-2011) and Chair (2007-09) of the Executive Council of the Texas Manufacturing Assistance Center. In Jan. 2012, he joined the University of North Texas as Professor and Chair of the Department of Engineering Technology, College of Engineering. His teaching and research interests are in the control systems engineering technology area. He is a member of the ASEE and a Senior Member of the IEEE - Control Systems Society
Systems Engineer, and those are the topics that he teaches in the DIT. He is actively engaged in engineering edu- cation research and has published at several conferences. He collaborates with an engineering education research group in his college, where they use and research problem-based learning.Dr. Martin Gerard Rogers, Dublin Institute of Technology Martin Gerard Rogers is Assistant Head of the School of Civil and Building Services Engineering. Page 25.1077.1 c American Society for Engineering Education, 2012 Program Offerings and Curriculum Convergence Between the Dublin Institute
Committee on Engineering Technology Accreditation, serving on the Board of Directors of the ASME Center for Education, and serv- ing as a member of the Mechanical Engineering Technology Department Head Committee. He has been a Program Evaluator for both the Society of Manufacturing Engineers (SME) and ASME and currently serves on the Technology Accreditation Council (TAC) of ABET, representing ASME. He also serves on the SME’s Manufacturing Education and Research Community steering committee. Before joining ASU, he had been at North Dakota State University, where he was a faculty member in the Industrial and Manufacturing Engineering Department. His research interests include machining, effective teaching, and
virtualization and cloud computing.This has created a significantly growing need for knowledgeable workers that are able to design,deploy, and troubleshoot these complex environments. Consequently, IT instructional programs Page 25.439.2must offer effective courses in teaching these concepts so students are able to develop the skillsnecessary to meet the growing demand by organizations.While researching potential virtualization-aware alternatives to traditional cluster kits—whichare not necessarily targeted towards virtualization or cloud computing-based environments—wediscovered that an infrastructure as a service (IaaS) cloud computing toolkit would be
teaching, and engineering mechanics. Before coming to academia, he was a Design Engineer, Maintenance Supervisor, and Plant Engineer. He is a registered Professional Engineer.Mr. Thomas Perry P.E., American Society of Mechanical EngineersDr. Allan T. Kirkpatrick P.E., Colorado State University Page 25.210.1 c American Society for Engineering Education, 2012 ASME’s Vision 2030’s Import for Mechanical Engineering TechnologyAbstractIn recent years, various professional societies or individuals have put forth statements outlininghow engineering and engineering
onwards Teaching, Administration and Research have been his forte. His administrative experience speaks volumes. He has held various positions as Head, Department of Mechanical Engineering from 1996- 99, He became the Head of the Department of Bio-Medical Engineering, Osmania University between 2001-2003 and 2005-2007 and Founder/ Director, Centre for Energy Technology in Osmania University, Hyderabad. Principal, University College of Engineering, Osmania University for nearly 8 years, Dean Faculty of Engineering for 2 years and also the member of the Executive council at Osmania University. Awards and honours have been exemplary to his intellectual. Capability Notable among them are: 1. Eminent Engineer National Award
AC 2012-4011: PROGRAMMING IS INVISIBLE OR IS IT? HOW TOBRING A FIRST-YEAR PROGRAMMING COURSE TO LIFEDr. Beverly K. Jaeger, Northeastern University Beverly Jaeger, Susan Freeman, and Richard Whalen are members of Northeastern University’s Gateway Team, a group of teaching faculty devoted to the developing and enhancing the First-year Engineering program at Northeastern University (NU). They also each maintain a close affiliation with the Mechan- ical and Industrial Engineering program at NU, bringing expertise from their majors to the first-year classroom. The focus of this team is to provide a consistent, comprehensive, and constructive educational experience that endorses the student-centered, professional, and
AC 2012-3215: TEAMS, DESIGN, MENTORING, AND MANAGING FORCOMPUTER SCIENCE UNDERCLASSMENDr. David Wilczynski, University of Southern California David Wilczynski has a long history at USC. He was the first Ph.D. graduate from USC Information Science Institute in 1975, where some of the initial work on Arpanet was done. His research specialty at the time was in Knowledge Representation. In 1984, he left USC for almost 20 years to be an entrepreneur. Most of his work was in manufacturing, both in Detroit and Japan. During that time, he worked on programming real-time systems using an Agent methodology, which he now teach in his CSCI 201 class. He returned to USC in 2002 to teach full time. Mostly, he worries about how to
• intercultural competence, development, knowledge of pure mass production is not • project management. required and therefore not transferred during the program.Didactics will be characterized by Conclusion • active rather than passive pedagogy (student centered), The presented program of Electronic System Engineering • team teaching and cooperative learning, (ESE) will be promoted and partly supported by German, • laboratory tutorials, U.S., and Malaysian companies in an
students take notes. Perhaps because the subject is taken by so many engineeringstudents across multiple disciplines, a number of investigators have developed and examinedinnovative teaching strategies for improving student learning in Statics. (See, for example, [2-4].)There are several well-established textbooks for Statics, one of which is Engineering Mechanics:Statics by R.C. Hibbeler [1]. To assist the instructor, a set of PowerPoint® slides that are linkedto the textbook can be downloaded from the publisher’s website. These slides were originallycreated by Danielson and Mehta as part of a National Science Foundation (NSF) CourseCurriculum and Laboratory Improvement (CCLI) Program grant to develop resource materialsthat leveraged relatively
students take notes. Perhaps because the subject is taken by so many engineeringstudents across multiple disciplines, a number of investigators have developed and examinedinnovative teaching strategies for improving student learning in Statics. (See, for example, [2-4].)There are several well-established textbooks for Statics, one of which is Engineering Mechanics:Statics by R.C. Hibbeler [1]. To assist the instructor, a set of PowerPoint® slides that are linkedto the textbook can be downloaded from the publisher’s website. These slides were originallycreated by Danielson and Mehta as part of a National Science Foundation (NSF) CourseCurriculum and Laboratory Improvement (CCLI) Program grant to develop resource materialsthat leveraged relatively
AC 2012-3546: TEMPLATE-BASED IMAGE PROCESSING TOOLKIT FORANDROID PHONESMrs. Santosh Chandana Golagani, University of Texas, San AntonioMr. Moosa Esfahanian, University of Texas, San AntonioDr. David Akopian, University of Texas, San Antonio David Akopian is an Associate Professor at the University of Texas, San Antonio (UTSA). He joined the UTSA in 2003 where he founded the Software Communication and Navigation Systems Laboratory. He received the M.Sc. degree in radio-electronics from the Moscow Institute of Physics and Technology in 1987 and Ph.D. degree in electrical engineering from the Tampere University of Technology (TUT), Fin- land, in 1997. From 1999 to 2003, he was a Senior Engineer and Specialist with Nokia
AC 2012-3222: IMPLEMENTATION OF A NEW MECHANICAL ENGI-NEERING PROPULSION DETAIL DESIGN CAPSTONE COURSEProf. Brenda A. Haven, Embry-Riddle Aeronautical University, Prescott Brenda Haven teaches thermodynamics and three jet propulsion courses at Embry-Riddle Aeronautical University (ERAU). Prior to coming to ERAU in 2008, Haven retired from the Air Force after 25 years working as an engineer in support of the F-15 fighter, advanced turbine engine research and development, and as a professor at the Air Force Academy.Prof. Michael Kenneth Fabian, Embry-Riddle Aeronautical University Michael Kenneth Fabian teaches thermodynamics, jet and rocket propulsion, and thermal power con- version courses at ERAU. He retired from
teach studentshow to use the Excel “tool” to prepare scientifically acceptable graphs useful for data analysis.The CPR graphing assignment seeks to embed an understanding of the essential features throughexplication of the graphing process, training, and peer evaluation of six examples. The graphingtask itself is a component of a lab report for an assignment the students have already done. Thus,it is an authentic representation of students’ own data.Research Methodology: Engineering and physical science students (n = 172; 70 engineeringmajors) in the second term of a general chemistry laboratory course wrote a 350-word essaydescribing how they prepared their graphs for a linear analysis of the data for one of theirexperiments. They were
his Ph.D., he moved to the Raleigh area to serve as a Research Chemical Engineer for RTI International, focusing on ”cutting-edge” energy research. In his free time, Cooper enjoys hiking, sports, and cooking.Dr. Lisa G. Bullard P.E., North Carolina State University Lisa G. Bullard is a Teaching Professor and Director of Undergraduate Studies in the Department of Chemical and Biomolecular Engineering at North Carolina State University. She received her B.S. in chemical engineering from NC State and her Ph.D. in chemical engineering from Carnegie Mellon Univer- sity. She served in engineering and management positions within Eastman Chemical Co. from 1991-2000. A faculty member at NCSU since 2000, Bullard has won
, and his Ph.D. from the University of Washington. He worked at PACCAR Technical Center as an R&D engineer and at Oak Ridge National Laboratory as a development staff member. He was also faculty and associate chair at University of Washington, Seattle, and professor and chair at University of Detroit Mercy before starting his position as faculty and dean at CSU, Fresno. His research and teaching interests include characteriza- tion of advanced materials (e.g., ceramics), experimental mechanics, data base development, cumulative damage mechanics, and probabilistic design and reliability.Dr. Walter V. Loscutoff, California State University, Fresno Walter V. Loscutoff is a professor and Former Chair of Mechanical