Satisfaction Table 4 Data collection procedures and schedules Phases Contents Duration(1) Pre-tests Demographics , computer experience, GPA Two weeks Knowledge on selected subjects through Concept Inventory Learning disposition measured through MSLQ(2) Collaborative learning Online discussion for collaborative learning Ten weeksthrough online discussion Students' Self-report on collaborative learning process Instructors
Children’s Hospital, and the Rehabilitation Institute of Chicago.Dr. Sheryl Elaine Burgstahler, University of Washigton Dr. Sheryl Burgstahler founded and directs the DO-IT (Disabilities, Opportunities, Internetworking, and Technology) Center and the Access Technology Center. These two centers promote (1) the use of main- stream and assistive technology and other interventions to support the success of students with disabilities in postsecondary education and careers and (2) the development of facilities, computer labs, academic and administrative software, websites, multimedia, and distance learning programs that are welcoming and accessible to individuals with disabilities. The ATC focuses efforts at the UW; the DO-IT
as compared to first-year students. The lower expectation of seniorstudents suggest that engineering instructors should consider ways to engage upper level studentsin creative behaviors. Future research includes a longitudinal study to examine how creative self-concept changes in progression through the engineering curriculum.Introduction The concept of creativity has been an important research topic since the 1950’s and1960’s.1 Educators and scholars with diverse domains of expertise have studied creativity, theskills associated with creativity, and techniques to increase creativity in their respective fields.2-6However, even in the field of psychology, where the most research pertaining to the topic hasbeen produced, researchers
through the NSF sponsored Engineering Coalition of Schools for Excellence in Education and Leadership (ECSEL) program. The main effort made under the ECSEL program was centered on creating a projectdriven approach to teaching engineering design to incoming students 1 . In 1992, seventeen students participated in the pilot section of ENES 100, which was anchored around the design and construction of a swing set. Afterwards, five design projects were developed to form a design project cycle. Those projects were based on the development of a wind mill, a solar desalination still, a weighing machine, a postal scale, and a humanpowered water pump. The motivation was that the design project cycle would ensure that the projects remained fresh for
and HCI practitioners.IntroductionNumerous studies have identified reflection as an essential element in learning, development ofexpertise, and supporting motivation.[1,2,3,4] As Rodgers put it “reflection is identified as astandard toward which all teachers and students must strive” and “the cry for accomplishment insystematic, reflective thinking is clear”.[5] While reflection is generally understood as animportant part of learning, it is emerging as a critical area of scholarship in engineeringeducation.[1] Operationalizing the concept of reflection in classrooms in order to help engineeringstudents engage in reflection has been a challenge and educators are seeking ways to best addressthis issue.[6,7,8]Similar to educators in engineering
currently no easy methods tosynthesize research results, share research data, and indeed validate research studies effectively.In general, topics related to data and data sharing are largely treated as taboos in the engineeringeducation research space. Data sharing mechanisms to enable fundamental research inengineering education that has the potential to address systemic problems have not yet beenclarified. The research goal of this paper is to identify and understand patterns for data sharingmechanisms in order to inform design requirements for data sharing practices and infrastructurein engineering education.1. IntroductionThe scientific community is increasingly recognizing the necessity for sharing scientific databeyond the initial purposes
(system).The general system analysis steps to problem solving are outlined in Figure 1.The initial step is producing a diagram illustrating the system and clearly delineating all theinput/output variables (V) that affect the behavior of the system and listing all the pertinentindependent equations (E) between the variables. The difference in the number of variables andindependent equations establishes the number of degrees of freedom (DoF) in the system. TheDoF value can be used as a check point on the mathematical reasoning or formulation of theproblem. If the DoF is zero, the solution of the problem is determinate with only one solution;but if V > E, there may be several alternative solutions, which defines the problem as a designcase
six learning outcomes in more detail:1. We refrain from addressing “Describe the difference between centralized and distributed software configuration management. [Familiarity]” 4 due to the constraints posed by teaching in the first year: software configuration management is beyond the scope of programming-in-the-small.2. We achieve the same mastery level on “Demonstrate the capability to use software tools in support of the development of a software product of medium size. [Usage]” 4.3. We exceed the recommended mastery level on “Describe how available static and dynamic test tools can be integrated into the software development environment. [Familiarity]” 4 by letting students have hands-on experience with testing tools such as
recession, tuition prices are skyrocketing, student loan debt has surpassed$1 trillion, parents, who have leveraged their homes through equity loans and first loans - for thesecond time, are losing faith in the value of education, state funding is dwindling, federal grantsare shrinking, and donor dollars are smaller5”. These are the times in which we live. Change isinevitable. We can continue to do what we do, until such time when we can’t, then, we must dosomething else. This is the prevalence of the literature today.There is a growing trend toward college and university mergers. Marcus6 states “…it’s a kind ofprivate sector-style consolidation that is becoming increasingly common, not only for publicinstitutions, but also for nonprofit
of responsible science and social science writing. What is less often Page 26.1564.2addressed by even the most thoughtful researchers, however, is the available field of existingresearch options, as such; the universe of possible, credible methodological choices orevidentiary standards.1, 2 We believe that reflection on those parameters would support a morerobust inquiry into STEM education subjects, as would explicit contextualization of researchers’chosen methods or standards along societal terms: that is, attention to the question of whichsocietal conditions may determine researchers’ embrace of quantitative or qualitative methods
students are motived by their engineering mentor’s engagement in their learning and driveto seek improvement. The authors were also enthused by the desire to make a difference, makingtheir learning experience more meaningful. Design projects that address problems posed by realclients, especially those that involve third-world problems, provide that opportunity. Through anevaluation of the design curriculum the authors made recommendations to strengthen studentengagement in engineering education.1 Introduction and BackgroundContext based education methods, where students are presented with application before science,are proven to be significantly more effective than traditional approaches that teach science first,then apply it to real life.1,2 The
the German Institute ofEconomics, the country currently needs 117,000 engineers, scientists, IT experts and technicians. Page 26.337.2U.K is also faced with a chronic shortage of science graduates and especially engineers, whereseveral industries are struggling with a shortage of engineers in the area of power generation,aerospace and manufacturing. Sub-Saharan Africa alone needs 2.5 million new engineers andtechnicians if the region was to achieve the UN Millennium Development Goal of improvedaccess to clean water and sanitation [1].The number of engineering graduates enrolled in Asian countries and their population trendshows that the
terms of theundergraduate and graduate degrees they earn at colleges and universities. Yet, in spite ofsuch advances, most science, technology, engineering and math (STEM) fields stillremain sharply gender segregated, with men making up the majority.1 This is nowheremore evident than in engineering. According to statistics, women earn 57% ofundergraduate degrees, but only 18% of baccalaureates in engineering.2-3 These trendsare a cause for concern because occupational gender segregation fuels the wage gapbetween men and women, which perpetuates gender inequalities.4 Additionally, a dearthof women in engineering represents the potential loss of human capital that could help toadvance scientific and technological discovery.5In response to this
their faculty research advisors received $100.AssessmentDemographicsThe pilot Spring Break for Research program attracted 25 applications for the pilot program. Fromthese applications, a diverse group of 20 undergraduates and 20 graduate mentors were selected asseen in Table 1. 60% 50% 45% 40% 35% 30% 25% 25.0% 24.3% 25% 20% 11.5% 10% 6.2% 0% URM Female Undergraduates in College of Engineering SB4R Undergraduates Graduates in College of Engineering SB4R GraduatesTable 1. Demographics
study was an interpretativephenomenology analysis (IPA)7; nine sophomore and junior biomedical engineering (BME) andmechanical engineering (ME) students at a southeastern land grant institution were interviewedabout their experiences in terms of connecting their future goals to their actions in the present.The themes that emerged from these interviews focused on the range of possible future selvesthat students described. These themes were then described graphically as being cone-shaped (seeFigure 1), where the three axes represent time-orientation, instrumentality, time attitude axis7.The second study was a phenomenography, focusing on the different ways in which students areperceiving the future5–7. This study was a continuation of the first
the mountains “join” up). After mapping out the mountain, we can then lookto see if, for example, trees on different mountains have any systematic differences, such as theirgenus, average height, longevity, etc. The analogy of studying the location of trees on themountain is represented schematically in Figure 1 as a companion to the illustrative exampledescribed in this paragraph.Figure 1: Schematic representation of the illustrative example of use Topological Data Analysis. Here elevation profiles of mountains are examine to understand the different tree populations found in different elevation zones.In this same way, we use the Mapper algorithm to search the quantitative student response datafor patterns in the
of the traditional four-year baccalaureate degree.”The National Council of Examiners for Engineering and Surveying (NCEES), is the nationalorganization that represents the state licensing boards for professional engineering and surveyingacross the U.S. In 2015, NCEES approved Position Statement 35 – Future EducationalRequirements for Engineering Licensure4 by a nearly 2:1 ratio. The preamble of the statementsays: “One of the goals of NCEES is to advance licensure standards for all professional engineers. Those standards describe the technical and professional competencies needed to safeguard the health, safety and welfare of the public. The council recognizes that the future demands for increasing technical and
1prestige and conceptual hurdles . The POD community represents a young field with many new practitioners who have been or still are faculty in various disciplines and who have 2journeyed into faculty development later in their careers . Both communities intersect in the realm of engineering faculty development. All three of us work within that intersection; we are engineers who journeyed into education research during our time in graduate school and who now focus aspects of our education research and outreach on engineering faculty development. The purpose of this paper is to share what we have learned about the challenges and opportunities that arose while working to
Jacobs Excellence in Education Award, 2002 Jacobs Innovation Grant, 2003 Distinguished Teacher Award, and 2012 Inaugural Distinguished Award for Excellence in the cate- gory Inspiration through Leadership. Moreover, he is a recipient of 2014-2015 University Distinguished Teaching Award at NYU. In 2004, he was selected for a three-year term as a Senior Faculty Fellow of NYU-SoE’s Othmer Institute for Interdisciplinary Studies. His scholarly activities have included 3 edited books, 7 chapters in edited books, 1 book review, 55 journal articles, and 109 conference papers. He has mentored 1 B.S., 16 M.S., and 4 Ph.D. thesis students; 31 undergraduate research students and 11 under- graduate senior design project teams
have access to this technology. The remainder of this paper details the approach taken and lessons learned implementing 3D printers into a firstyear engineering design course. First, implementation details including specific tools, techniques and equipment used in the labs are provided. Next, the instructional approach developed to introduce the concepts and techniques linking CAD with 3D printing is presented. Preliminary results of this effort are then discussed by presenting (1) the print log data collected throughout the semester that provides an indication of the use and success rates associated with the printers and (2) data collected from a survey designed to determine the perceived effectiveness of the system and student
institutionalization strategies thatwere eventually employed. We will also discuss this project’s contribution to a greaterSTEM presence and culture on campus which has resulted in our Latino/Hispanic studentsapproaching full representation in STEM and engineering majors on our campus. (Figure 1) Approaching Representation 50% Percentage of STEM majors who are Latino Percentage of Latino students 40% 30% 34% 32% 34% 20% 26% 23% 19% 20% 10
faculty5,10. For these reasonsand more, learning communities should be a more visible and common means to helpengineering faculty to learn, share, and thrive.Building a Faculty Learning Community: A High Bar?How should a faculty learning community be formed? How should it operate? And who shouldset the process into motion? The most visible recommended practices for faculty learningcommunities in higher education come from the highly influential pioneering work of Milt Coxand his colleagues at Miami University. From their literature directed toward learningcommunity builders10,13–15, we might infer that: 1. A learning community must gain broad support within the hierarchy of an institution, including deans and departments and faculty. 2. A
-communitypartnership.1 COEUR presents best practices that “support and sustain highly effectiveundergraduate research environments.” As described in COEUR, these practices focus on (1)Campus mission and culture; (2) Administrative support; (3) Research infrastructure; (4)Professional Development opportunities; (5) Recognition; (6) External funding; (7)Dissemination; (8) Student-centered issues; (9) Curriculum; (10) Summer Research Program;(11) Assessment Activities; and (12) Strategic Planning. This paper focuses on the summerresearch program and student benefits and student outcomes with the use of the seven benefitcategories2 described by Seymour et al. in 2003 are: (i) Personal/professional; (2) Thinking andworking like a scientist; (3) Skills; (4
analysispresented here is part of a larger study of the “impact trajectories” (contributions, influences,challenges, successes) of pioneers in the field of engineering education. For the purposes of thisproject, “engineering education pioneers” are defined as those who (1) are/were active (throughresearch, practice, and/or service) in the area of engineering education; and (2) are recognized bymembers of the engineering education community as significant contributors to or shapers of thefield of engineering education.In this paper, we seek to explore in greater depth the nature of engineering education pioneers’perceived contributions and impacts in engineering education, and what these contributions andimpacts mean for the engineering education community
avoidenvironmental restrictions and tax obligations. Specifically, this paper examines the CostaConcordia incident as an illustration for the information to follow: questionable registrationpractices; pollution issues; and integration in technical classes, specifically, the field ofenvironmental engineering.BackgroundInterest in the environmental effects of the cruise ship industry is relatively a recent, dating backabout 20 years, which corresponds to the physical growth of the ships and the explosion ofconsumers in search of exotic vacations. Between 1980 and 2013, the number of passengersincreased from 1.4 million to 21.5 million,1, 2 with an estimated 24 million to sail in 2016.1Consequently, the size of ships has increased to accommodate higher
Circuit Tutor system hasnow been used by over 2300 students in 54 class sections at eight different colleges anduniversities, with generally very favorable ratings.1. IntroductionLinear circuit analysis is a foundational topic for electrical engineering students and frequentlycomprises the exposure to electrical topics for non-electrical engineers. Optimizing studentsuccess in this course is therefore of critical importance. The development of a computer-basedtutoring system based on the idea of step-based tutoring has therefore been undertaken, whereeach individual step in a student’s work on a problem is accepted and evaluated for correctnessbefore they proceed to the next step of the solution. Such a system requires the creation ofspecial
starting fall 2015.Inworks Space We considered it critical to the success of the Inworks that it be housed in space thatsupports communication, collaboration, and experimentation. This is because that physical spacerepresents one of the tools used to bring people from different backgrounds together. Our spacehad to be warm, inviting, and supportive. People should want to spend time there, and it shouldbe possible to spend large amounts of time there comfortably. There needed to be a place toprepare a light meal, and to relax. Our space did not have to be modern or upscale. Power andconnectivity are essential; carpet and acoustic ceiling tile are not. Figure 1 shows a view of theInworks workshop area.Figure 1: The Inworks Workshop
the knowledge about the field of engineering and simultaneously provide development ofinvaluable professional skill sets to the engineering student. In this first year of study we look atthe design parameters of the project where students from various STEAM based fields must designa living, talking, interactive pumpkin patch as part of a community exhibit.MATERIALS AND METHODS The project itself was a community based learning experience in which students from variousmajors collaborated to design an interactive pumpkin patch. The student group this first year wascomposed of 44 students of which 13 were science majors, 12 were engineering majors, 10 wereliberal arts majors, 4 were business majors, 4 were nursing majors, and 1 was an education
designsoftware that seamlessly transitioned between them as well.Background and IntroductionFor the last twenty-one years in each spring term, The Ohio State University FEH Program hasincorporated an autonomous robot design project in which college freshman honors engineeringstudents design, build, and program autonomous vehicles to perform certain well-defined taskswithin a two-minute time limit1. The tasks the robots must complete revolve around a centraltheme developed each year by the teaching assistants and faculty of the Honors engineeringclasses. The theme for spring 2015 was “Arctic Storm”, and the robot competition course isshown as a CAD model in Figure 1. Figure 1. Diagram of 2015 Robot Competition CourseThe project uses
National Science Foundation (NSF) funded grants: Designing Teaching: Scaling up the SIMPLE Design Framework for Interactive Teaching Development and a research initiation grant: Student-directed differ- entiated learning in college-level engineering education. Her research centers on facilitating and studying her role in faculty development self-study collaboratives. c American Society for Engineering Education, 2016 SIMPLE Design Framework for Teaching Development Across STEMIntroductionExtensive research has shown the benefits of interactive teaching for student learning andretention 1. However, significant barriers exist to broadening the use of interactivetechniques in college classrooms, particularly