Paper ID #16111A Tale of Three UAVs - or Design Lessons in Education for Projects Demand-ing Cross-Disciplinary IntegrationProf. Charles Pezeshki, Washington State University Charles (Chuck) Pezeshki is the Director of the Industrial Design Clinic in the School of MME at Wash- ington State University. The Industrial Design Clinic is the primary capstone vehicle for the School and focuses on industrially sponsored projects with hard deliverables that students must complete for gradua- tion. His research area is in knowledge construction as a function of social/relational organization.Prof. Jacob William Leachman, Washington
showcase the nexus of science and design using case studies, news, and articles. As an instructor, she was one of the recipients of The Allan Blizzard Award, a Canadian national teaching award for collaborative projects that improve student learning in 2004. In 2005, she was one of the recipients of the American Society of Mechanical Engineers Curriculum Innovation Award. She is - as PIC II chair - currently a board member of ASEE.Dr. Denis Onen, University of Calgary Dr. Onen is a registered professional engineer with a broad industrial background in electrical engineering, in the following areas: electronics and embedded systems, integrated circuit design (signal processing and crytpography), biomedical engineering
practice, and effective pedagogical practices. Her background is in dynamics and con- trols. c American Society for Engineering Education, 2016 A Case Study on Students’ Senior Design Experience in the EPA P3 CompetitionAbstractThe P3 (People, Prosperity, and the Planet) competition is a national collegiate sustainabilitydesign competition sponsored by the U.S. EPA (Environmental Protection Agency). Since 2012,we have integrated the P3 competition with the capstone design course of Clean Energy Systemstrack in mechanical engineering as an effective educational vehicle for introducing the conceptof sustainable design. This paper presents the senior design project to
Paper ID #16953Student Project to Develop a Neural Network-based State of Charge Indica-tor for Primary BatteriesDr. Herbert L. Hess, University of Idaho, Moscow Herb Hess is Professor of Electrical Engineering at the University of Idaho, where he teaches subjects in He received the PhD Degree from the University of Wisconsin-Madison in 1993. His research and teaching interests are in power electronics, electric machines and drives, electrical power systems, and analog/mixed signal electronics. He has taught senior capstone design since 1985 at several universities.Dr. Edward James William Jr, Solved Engineering LLC Dr
, University of the District of Columbia Sasan Haghani, Ph.D., is an Associate Professor of Electrical and Computer Engineering at the University of the District of Columbia. His research interests include the application of wireless sensor networks in biomedical and environmental domains and performance analysis of communication systems over fading channels.Roussel Kamaha c American Society for Engineering Education, 2016 Real-Time System Implementation for Video ProcessingAbstractThis paper details the results of a capstone design project to develop a real-timehardware/software video processing system to implement Canny edge detection algorithm on aZynq FPGA platform. The HSL tool, part of
Paper ID #15078A Capstone Project on the Development of an Environmental MonitoringWireless Sensor Network Powered by Harvested RF EnergyDr. Sasan Haghani, University of the District of Columbia Sasan Haghani, Ph.D., is an Associate Professor of Electrical and Computer Engineering at the University of the District of Columbia. His research interests include the application of wireless sensor networks in biomedical and environmental domains and performance analysis of communication systems over fading channels.Dr. Wagdy H. Mahmoud, University of the District of Columbia Wagdy H. Mahmoud is an Associate Professor of
Designettes in Capstone: Characterizing the Impact of Early Design Experiences in Capstone Education with Emphasis on Designette Project Choice Cory A. Cooper,a Michael L. Anderson,a Daniel D. Jensen,a Joseph M. Fulton,a Kristin L. Woodb a United States Air Force Academy, Colorado, USA b Singapore University of Technology and Design, SingaporeAbstractFull engineering design experiences often require months to accomplish. In an effort toincorporate design, design thinking, and design innovation into curriculum without consumingextensive time, the use of shortened design
Paper ID #14991A Pre-capstone Junior-level Structural and Materials Design Project for CivilEngineering Students: Glue Laminated Timber DesignDr. Nicholas Andres Brake, Lamar University Nicholas Brake is currently an Assistant Professor in the civil and environmental department at Lamar University. He received his B.S. (2005), M.S. (2008), and Ph.D. (2012) from Michigan State University. His area of expertise is in cementitious composites which includes: fracture and fatigue mechanics of quasi-brittle materials, recycled concrete, conductive concrete, reinforced concrete, pervious concrete, geopolymer, and structural
; Design Metrics Weeks 2-5 Phase 2: Concept Generation & Selection Weeks 6-9 Phase 3: Final Design, Prototype & Project Budget Midterm Oral Presentation, Outside Reviews Weeks 10-15 Phase 4: Design Validation, Conclusion & Path Forward Final Oral Presentation, Outside Reviews & Poster Session *Falls in the middle of Phase 3, closer to week 7-8Senior Design (BMEG450), a capstone course, is an intensive 6-credit, one semester, team-basedproject driven course, which requires strong teamwork and application of engineering, scienceand design principles to solve a sponsor driven problem. Traditionally, industrial partners
Paper ID #14630Transforming the CREDLE (Capstone Research Experience for Distance Learn-ing Executives)Dr. Malini Natarajarathinam, Texas A&M University Dr. Malini Natarajarathinam is an Associate professor with Department of Engineering Technology and Industrial Distribution. She teaches classes on strategic relationships for industrial distribution, distribu- tion information systems and new directions in Industrial Distribution. She is also the founding faculty and advisor for the Society of Women in Industrial Distribution (SWID). She works on many service learning projects with her students where they work
middle school students and to support entrepreneurship at primarily undergraduate institutions. Her background is in civil engineering with a focus on structural materials. She holds a B.S.E. degree from Princeton, and M.Eng. and Ph.D. degrees from Cornell.Ms. Sophia L. Poulos, Smith College Sophia Poulos is a 2016 engineering graduate from Smith College. She is interested in structural engineer- ing and has worked on earthquake engineering projects with NEES@UCLA. She is a research assistant on the CDHub 2.0 initiative and innovations in engineering design education at the capstone level. She is pursuing a masters degree in structural engineering at the University of California Davis.Ms. Laura Mae Rosenbauer, Smith
Society for Engineering Education, 2016 Designing with Lessons from the Machine Design Course: A Capstone Experience Sangarappillai Sivaloganathan and Farag K. Omar Department of Mechanical Engineering College of Engineering United Arab Emirates University P.O. Box 15551, Al Ain United Arab EmiratesKey Words: Machine Design, Capstone Project, Impact of Designed ArtefactsAbstract:Extensive procedures and complex calculations involved in the Machine Designcourses make the students feel dull. To enthuse the students there is a need to haveinspiring capstone projects that
Paper ID #15403Innovative Teaching and Learning Strategies withDr. Daniel J. Magda, Weber State University Professor, Mechanical Engineer, Ph.D. c American Society for Engineering Education, 2016 Innovative Teaching and Learning Strategies with Laboratory Courses via Capstone DesignAbstractThe objective of this paper is to improve student retention of their engineering mechanicseducation with a teaching/learning strategy implemented in their capstone design project class.There are many quotes from great historians and current educators about the process of teachingand the benefits of
Design Lab and enhancing the experience for students working on engineering design projects. c American Society for Engineering Education, 2016 Using Capstone to Drive Continuous Improvement in the CurriculumAbstractCapstone is intended to be a proving ground for students to demonstrate that they are preparedfor professional practice. Accordingly, this paper addresses the problem of how capstone canprovide feedback and thereby continuously make improvements to the engineering curriculum.A progressive model for hierarchically prioritizing student outcomes and mapping them to directmetrics related to the curriculum is presented as a mechanism for generating feedback. Themodel is used to highlight areas of
Paper ID #16272Integration of General Education into the Senior Capstone Class in Engineer-ingDr. Patricia R Backer, San Jose State University Dr. Backer been a faculty at SJSU since 1990 and held positions as an assistant professor, associate professor, professor, department chair, and director. Since coming to San Jose State University in 1990, I have been involved in the General Education program. Currently, Dr. Backer serves as the PI for two SJSU grants: the AANAPISI grant and the Title III Strengthening grant both from the U.S. Department of Education.Dr. Laura E Sullivan-Green, San Jose State University Dr
work looks at the impact of authentic value- added capstone projects on student’s soft skills by comparing results of a multi-year collaboration survey given to multiple senior capstone teams. The observed trends suggest that projects with community impact (irrespective of size or geographic constraint) foster increased communication, participation, and ultimately collaboration.Introduction There is a worldwide push to engage and develop K-12 student interest in Science,Technology, Engineering and Mathematics (STEM) disciplines1. Some STEM collegiate programs,such as civil and mechanical engineering, seem to have a plethora of incoming and returningstudents.Why?Buildingblocks
Incorporating Designer Empathy in Senior Capstone Design CoursesAbstractThis paper will detail the challenges two groups of students, at two varying universities workingon two separate senior capstone design projects, experienced when designing for target usersthey lack empathy for. The projects presented in this paper support handicapped and/or disabledindividuals. As many engineers will gain employment in a healthcare related field, it isimportant that they are able to empathize with the target user – often handicapped and/or elderlyindividuals. This is further exacerbated by the increase in the number of handicapped andelderly individuals in the United States as medical care improves and life expectancy continuesto
cohortsAbstractThe capstone course sequence in an engineering or engineering technology program bringstogether all elements of the curriculum into a comprehensive learning experience. A team ofstudents works together, combining the topics learned during their undergraduate coursework tocomplete a substantial design project. Design courses can be uncomfortable for many studentsbecause of the open-ended nature of the requirement, leading to many questions such as “Are weon the right track? Do I have the right answer? Are we approaching this the right way?” Due totheir unique experiences, student veterans in engineering are well positioned to enable theircohorts to overcome these challenges. The military experience teaches veterans to becomeproblem-solvers
diversity, quality, and rigorthe characteristics necessary to serve a 21st-century nation and world. Capstone projects arewidely acknowledged as important components in engineering, engineering technology, design,and business undergraduate education.2,6,15Much has been written on the topic, particularly on capstone courses in engineering.6, 17 Someresearchers have focused on capstone programming and structure.13, 17, 18 Others haveemphasized multidisciplinary collaborations.10, 19, 20 A smaller amount of research has addressedthe assessment of student knowledge patterns in multidisciplinary environments.4, 21, 22 However,little research has examined the role of faculty and their beliefs on the success factors, as well as,time commitments for
into 5 categories of analysis that arerelated to the five steps that are part of the effective creative process proposed byCsikszentmihalyi5: 1) Finding problems (preparation), 2) Gathering and reflecting oninformation (incubation), 3) Problem exploration (insight), 4) Generating and evaluating ideas(evaluation), and 5) Implementation (elaboration).Creativity assessment was also based on the Consensual Assessment Technique9 (CAT), which isconstructed on the idea that the best measure of creativity regardless of what is being evaluated,is the assessment by experts in that field. Therefore, a group of twenty experts in Food Science,Technology, and Engineering fields were invited to evaluate capstone course final projects anddeveloped food
. c American Society for Engineering Education, 2016 Exploring Innovation, Psychological Safety, Communication and Knowledge Application in a Multidisciplinary Capstone Design CourseAbstractIn recent years, engineering schools have been inspired by accreditation bodies to incorporatemultidisciplinary teaming in their curricula, and hence engineering schools have started to offermultidisciplinary capstone design courses. These courses give senior engineering studentsindustry/client based projects in order to prepare them for today’s diverse educational andprofessional work place. In contrast to monodisciplinary capstones, multidisciplinary capstonescreate a diverse team of students from
Engineering Projects* 3Design: Engineering for the Community* 3 Design: Invention and Innovation* 3 Capstone Design* 6 Capstone Design* 6 Engineering Total 51 Engineering Total 75 Physics 1, 2, and Lab 9 Physics 1, 2, 3 and Lab 12 Chemistry1 4 Chemistry 4 Basic Science Total 13 Basic Science Total 16 Calculus 1, 2, 3 12
Paper ID #16714Concept of a Human-Attended Lunar OutpostMr. Thomas W. Arrington, Texas A&M University Thomas Arrington worked as the student Project Manager for the Human Attended Lunar Outpost senior design project for the the Department of Aerospace Engineering at Texas A&M University in College Station. He has interned with Boeing Research and Technology three times, and was an active member of the Texas A&M University Sounding Rocketry Team.Mr. Nicolas Federico Hurst, Texas A&M 2015 Capstone Design Spacecraft Nico Hurst is a student of Texas A&M University. He recently graduated from the Aerospace
Materials, laboratory and field testing of structures and the fatigue behavior of concrete bridges. c American Society for Engineering Education, 2016 Inter-Collaborative Learning in Capstone Design How Do We Optimize Costs and Benefits?AbstractThe civil engineering programs at Rose-Hulman Institute of Technology (RH) and GonzagaUniversity (GU) have been seeking to understand how to best facilitate capstone projects incollaboration with students at other institutes. We have the following questions – • How beneficial is it for student teams to spend time together in person to understand their cultural differences and to develop a team rapport? • How beneficial is it
engineering and the program director for the Master of Science in Automotive Engineering. In addition, he is faculty co-advisor for the Collegiate Chapter of SAE and the Blue Devil Motorsports Organization. c American Society for Engineering Education, 2016 A Three Semester Mechanical Engineering Capstone Design Sequence Based on SAE Collegiate Design SeriesAbstractMechanical engineering students at Lawrence Technological University complete a five-credithour capstone project: either an SAE collegiate design series (CDS) vehicle or an industry-sponsored project (ISP). Students who select the SAE CDS option enroll in a three semester, threecourse sequence. Each team of seniors designs
Developing a Computer Engineering Capstone Design Course with a Startup CompanyAbstractEngineering faculty responsible for leading capstone projects are often faced with challenges indefining project topics for students. There is an ongoing need for developing new project topicsthat can be tackled by teams of upper-division undergraduate students. In contrast, during theearly phases of establishing a profitable business, many startup companies are faced with anoverwhelming number of research and development tasks required to build innovative products.Due to constraints in engineering resources or subject matter expertise, some of these projectsmay be deferred or left unsolved within the startup organization. Some of these
of Capstone DesignAbstractThe Mechanical, Electrical, and Computer Engineering Programs at York College ofPennsylvania have mandatory co-op programs in which each student receives three semesters ofengineering work experience. Our senior design courses further develop our students’ designand project development skills by intentionally targeting projects that emphasize working withina larger team. For example, we have built autonomous robots for the International GroundVehicle Competition (IGVC) and formula style race cars for the Society of AutomotiveEngineering Formula Student Design Competition (FSAE). While successfully developing ourstudents’ project development and group communication skills, these projects lacked thepersonal
Paper ID #16049Impacts of a University-wide Service Learning Program on a Senior Under-graduate Capstone CourseDr. Jennifer Queen Retherford, University of Tennessee, Knoxville Dr. Retherford is an alumna of the University of Nebraska, Omaha, and received her graduate degrees from Vanderbilt University. She currently teaches a variety of courses supporting the department of Civil & Environmental Engineering at the University of Tennessee. Among many structural engineer- ing courses, Dr. Retherford manages the Senior Design Project course for all undergraduate seniors.Kelly Summerford Ellenburg, The University of Tennessee
, mechanicals, as well as programs and project management. Since graduation, Jasmine has been working in a technical program management position at a company in Atlanta, GA that specializes in the use of ultrasonic technologies.Mr. Steven Howell SimsDr. Kevin Stanley McFall, Kennesaw State University c American Society for Engineering Education, 2016 A Mobile Telepresence Robot: a Case Study for Assessment of Capstone Design CourseAbstractThis paper presents the assessment scheme used to evaluate that learning outcomes are met in thecapstone design course for an undergraduate Mechatronics Engineering program. Included aresample rubrics used to evaluate the design-build-test model