, M. S., Dorime-Williams, M. L., & Tillman-Kelly,D. L. (2014). Measuring the educational benefits of diversity in engineering education: A multi-institutional survey analysis of women and underrepresented minorities. Retrieved fromhttps://commons.erau.edu/publication/292.3 Pucha, R., & Dunbar, T. (2022). SDG-focused project-based learning in engineering designcourses with diversity and inclusion interventions, ASEE SE Conference, Charleston, South Car-olina.4 Yosso, T. J. (2005). Whose culture has capital? A critical race theory discussion of communitycultural wealth. Race ethnicity and education, 8(1), 69-91.5 Moalosi, R., Popovic, V., & Hickling-Hudson, A. (2010). Culture-orientated product de-sign. International journal of
undergraduateonline engineering courses, we conducted a scoping review with the following research question:In what ways has scholarship addressed potential interrelationships between sense of belonging;online undergraduate engineering education; and diversity, equity, and inclusion?Literature on Sense of BelongingMaslow [8] explained that after physiological and safety needs are met, the need for love and tobelong emerges. Belonging is necessary for all human beings to achieve their full potential. Theconstruct of belongingness was well established by the early 2000’s and has been applied inschool and college settings (see Strayhorn [7] for a comprehensive review). Strayhorn [7] definessense of belonging as “students’ perceived social support on campus, a
–90, Feb. 1990, doi: 10.1901/jaba.1990.23-483.[5] W. P. Hung, “Clicker Clicks It,” Jun. 2011, p. 22.330.1-22.330.12, Accessed: Nov. 12, 2020. [Online]. Available: https://peer.asee.org/clicker-clicks-it.[6] C. Demetry, “Use Of Educational Technology To Transform The 50 Minute Lecture:,” Jun. 2005, p. 10.1385.1-10.1385.11, Accessed: Nov. 12, 2020. [Online]. Available: https://peer.asee.org/use-of-educational-technology-to-transform-the-50-minute-lecture.[7] L. V. D. Einde, S. H. Lee, and J. L. Le, “Incorporating Clickers and Peer Instruction into Large Structural Engineering Classrooms,” Jun. 2012, p. 25.759.1-25.759.19, Accessed: Nov. 12, 2020. [Online]. Available: https://peer.asee.org/incorporating-clickers-and-peer
://www.acenet.edu/Documents/Mapping- Internationalizationon-US-Campuses-2012-full.pdf.[3] Open Doors Report, “Number of International Students in the United States Hits All-Time High,” 2019. https://www.iie.org/en/Why-IIE/Announcements/2019/11/Number-of- International-Students-in-the-United-States-Hits-All-Time-High (accessed Dec. 09, 2020).[4] S. B. Twombly, M. H. Salisbury, S. D. Tumanut, and P. Klute, “Special Issue:Study Abroad in a New Global Century: Renewing the Promise, Refining the Purpose,” ASHE Higher Education Report, vol. 38, no. 4, pp. 1–152, 2012, doi: 10.1002/aehe.20004.[5] K. W. Dean and M. B. Jendzurski, “Using Post-Study-Abroad Experiences to Enhance International Study,” Honors in Practice, vol. 9, pp. 99–111, Jan
group may be composed of several teammembers with the same functional role and different team role(s). The nine current Belbin TeamRoles are described in Table 1. Each Team Role is defined by six factors: (1) personality; (2)mental ability; (3) current values and motivation; (4) field constraints; (5) experience; and (6)role learning [15]. Of particular relevance to the VIP Teams’ structure are the connections thatBelbin established between the following six stages of a team’s development and the need forprevailing Team Roles at each stage: (1) identifying needs; (2) finding ideas; (3) formulatingplans; (4) making ideas; (5) establishing team organization; and (6) following through [14].The Belbin Team Roles have been operationalized through
edu-cational setting. Future work will examine if the online offering of EGGN 100 impacted theretention of students.AcknowledgmentsThe author(s) acknowledge that the research work presented in this manuscript is based upon thestudent participants who were enrolled with the National Science Foundation-funded grant,“Building Capacity: Advancing Student Success in Undergraduate Engineering and ComputerScience” under NSF grant number: 1832536.” The contribution of Co-author Sudarshan Kurwad-kar is directly supported through this grant. References1. Mills, J. E, Treagust, D. F. (2003). Engineering Education – Is Problem-based or Project-based Learning the Answer. Australian Journal of Engineering Education http
minority groups may experienceadditional challenges while pursuing STEM degrees and careers [30]. Future research by thisteam will focus on further demographic assessment of the responses. The process will include(1) a similar survey with recruitment specifically targeted at underrepresented women in STEMto identify any additional challenges they may face, and (2) further data analysis of the existingdata set to assess differences between women in academia vs. non-academic jobs. Finally, sincethis survey was completed pre-COVID future assessment will be conducted to determine thechange in women’s challenges/needs during and post-pandemic.References[1] S. Fayer, A. Lacey, and A. Watson, “STEM Occupations: Past, Present, And Future,” p. 35.[2] Y
implies both a temporal dimension, in which organizations are improving all thetime, and a spatial dimension, in which organizations are improving all of their departments,units or divisions. In order to accomplish CI, Deming proposes utilizing the Plan-Do-Check-Act(PDCA) cycle for improvement at any stage [2]. PDCA is a 4-step cycle that repeatscontinuously through which organizations create a plan, execute it, review the results, and finallymake any corrective action before starting again.While Deming’s work was mainly directed towards business, academia took notice. The terms“Continuous Improvement” and “Total Quality Management” started to show up in highereducation research papers by the late 1980’s and early 1990’s [3]. CI then found its
1.16languageI participate in cultural events within my tribal community when 3.77 1.06 3.80 0.97possibleI know some of my tribe’s history 3.94 0.94 4.00 0.85I can identify important leaders for my tribe 3.76 1.07 3.67 1.09I can identify important social, health, political, or economic issues 3.78 1.07 3.76 1.07for my tribeI believe it is important to maintain and/or revitalize our Indigenous 3.80 1.14 3.78 1.15language(s
Award for Excellence in Service-Learning. Dr. Vernaza does research in engineering education (active learning techniques) and high-strain deformation of materials. Recently, she has focused on systemic strategies for the retention and advancement of STEM faculty and students, and academic in- terventions to improve student success. She is currently the Principal Investigator of a $1 million dollar National Science Foundation S-STEM award (2017-21), and she has secured over $2.5 million in grants during her tenure at Gannon University. She is currently the PI of an NSF S-STEM and ADVANCE-PAID grants.Dr. Saeed Tiari, Gannon University Dr. Saeed Tiari is an Associate Professor in the Biomedical, Industrial and Systems
definitions and descriptions, an alternative workingdefinition for troubleshooting would be a type of problem solving that analyzes a faulty systemto identify the fault(s) in the system and then pursue the appropriate procedures to correct thefault(s) in a timely manner.Engineering is one of the domains where well-developed troubleshooting skills can frequentlymake a substantial impact, e.g., when an engineer finds and fixes a problem that has shut down amass transit line. Significantly, it has been observed that the engineers entering industry havepoorly developed troubleshooting skills because they gain little hands-on experience and theyunderuse test equipment in the typical U.S. undergraduate engineering curriculum [5]. Morerecently (in 2018
, and across questions posed by students and instructors, individually. Thehigh frequency of generative design questions is particularly meaningful when compared to twoanalogous studies of peer critiques within a conventional face-to-face setting, in which low-levelquestions were more prevalent. These findings overall support written, asynchronous designcritiques as a useful mode for enhancing exchanges of feedback between student peers.References[1] M. Mandala, C. Schunn, S. Dow, M. Goldberg, J. Pearlman, W. Clark, and I. Mena, “Impact of collaborative team review on the quality of feedback in engineering design projects”, International Journal of Engineering Education, vol. 34, no. 4., pp. 1299-1313, 2018.[2] B. Lawson
Oxford, UK. Professor Zilouchian is senior member of several professional societies including Tau Beta Pi, Sigma Xi, Phi Kappa Phi, ASEE and IEEE.Dr. Nancy Romance , Florida Atlantic University Dr. Romance is Professor of Science/Engineering Education and Director of FAU’s STEM Collaborative. She is currently PI on the Title III Hispanic Serving Institution STEM Articulation grant and Co-PI on the College of Engineering and Computer Science’s NSF S STEM grant guiding engineering majors toward completion of a MS degree in Artificial Intelligence. Her work is focused extensively on science and engi- neering activities to promote enhanced classroom engagement of students and increased discipline-based educational
Paper ID #29057The Design and Impact of a Combined Makerspace, Wet Lab, andInstructional Design Studio for Chemical Engineering CurriculumProf. Anthony Butterfield, University of Utah Anthony Butterfield is an Associate Professor (Lecturer) in the Chemical Engineering Department of the University of Utah. He received his B. S. and Ph. D. from the University of Utah and a M. S. from the University of California, San Diego. His teaching responsibilities include the senior unit operations laboratory, capstone laboratory, first year design laboratory, and the introduction to chemical engineering. His research interests focus
. Grinder, and R. J. Ross, “A paradigm shift! The internet, the web, browsers, Java, and the future of computer science education,” SIGCSE Bull. (Association Comput. Mach. Spec. Interes. Gr. Comput. Sci. Educ., 1998.[3] J. MIRO-JULIA, “Dangers of the Paradigm Shift.”[4] D. Veisz, E. Z. Namouz, S. Joshi, and J. D. Summers, “Computer-aided design versus sketching: An exploratory case study,” Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM, 2012.[5] M. Karima, K. Sadhal, and T. McNeil, “From paper drawings to computer-aided design,” IEEE Comput. Graph. Appl., no. 2, pp. 27–39, 1985.[6] M. Katajamaki, “Knowledge-Based CAD,” Expert Syst. Appl., vol. 3, no. 2, pp. 277–287, 1991.[7] A. K. Goel, S. Vattam, B
unique to Duke?," Duke Chronicle, 24 October 2017. [Online]. Available: https://www.dukechronicle.com/article/2017/10/with-large-classes-and-waitlists-compsci- feels-growing-pains-but-are-those-pains-unique-to-duke. [Accessed 1 January 2020].[5] G. V. Glass and M. L. Smith, "Meta-analysis of research on class size and achievement," Educational evaluation and policy analysis, vol. 1, no. 1, pp. 2-16, 1979.[6] L. E. Winslow, "Programming pedagogy - a psychological overview," SIGCSE Bull., p. 17–22, 1996.[7] N. Bosch, S. D’Mello and C. Mills, "What emotions do novices experience during their first computer programming learning session?," in International Conference on Artificial Intelligence in Education, 2013.[8] E. J. Kim and K
Generation Science Standards: For States, By States. Washington, DC: National Academies Press, 2013.[3] President’s Council of Advisors on Science and Technology, Report to the President: Prepare and Inspire: K-12 Education in Science, Technology, Engineering, and Mathematics (STEM) for America’s Future. Washington, DC: Executive Office of the President, 2010.[4] S. Brophy, S. Klein, M. Portsmore, and C. Rogers, “Advancing engineering education in P- 12 classrooms,” Journal of Engineering Education, vol. 97, pp. 369-387, July 2008.[5] E. A. Ring, E. A. Dare, E. A. Crotty, and G. H. Roehrig, “The evolution of teacher conceptions of STEM education throughout an intensive professional development
, 45-70.Beddoes, K., Jesiek, B.K., and Borrego, M. (2011). Fostering international engineering educationresearch collaborations: On the need to think beyond the workshop format, Australian Journal ofEngineering Education, 17, 2, 39-54.Biancani, S. Dahlander, L., McFarland, D. A. and Smith, S. (2018). Superstars in the making?The broad effects of interdisciplinary centers, Research Policy, 47, 3, 543-557.Boardman, P.C. and Corley, E. (2008). University research centers and the composition ofresearch collaborations, Research Policy, 37, 5, 900-913.Borrego, M. (2006). Discipline-based views of collaboration in engineering education researchpartnerships, Frontiers in Education Conference, San Diego, CA.Borrego, M, and Newswander L.K. (2008
: 1. Problem identification: ability to articulate problem/s based on information provided in the scenario 2. Information needs: ability to identify additional information needed to address the problem/s identified 3. Stakeholder awareness: ability to identify and include groups needed for decision- making 4. Goals: ability to identify short- and long-term goals towards addressing the problem/s identified 5. Unintended consequences: ability to identify possible limitations and unintended consequences of a potential solution 6. Implementation challenges: ability to identify expected barriers to their crafted response to the problem scenario 7. Alignment: degree to which the respondent
. noted in their work, these process based, cognitive theory approaches were derived either adhoc or through controlled experiments that use simple tasks. The suitability of these models fordesign problems that are much more complex has never been investigated. This lack ofinvestigation and difficulties met in process based measurements of ideation effectiveness ledShah et al. to consider outcome based metrics for their study of engineering design [7]. As such,Shah et al. developed a framework to measure ideation effectiveness in simple and complexdesign situations.Shah et al.’s framework includes metrics that measure the effectiveness of formal ideageneration methods. The framework addresses that engineering design must be novel – unusualand
properties of polysulfones. Macromolecules, 25:3434, 1992. 5. Aitken, C.L., Mohanty, D.K. and Paul, D.R. Gas trans- port properties of poly(arlether bissulfones) and poly(arylether bisketones). J. Polym. Sci. Polym. Phys. Ed., 31:983-989, 1993. 6. Nichol, C.A., and Paul, D.R. Gas transport properties of polysulfones based on dihydroxynaphthalene isomers. J. Polym. Sci. Polym. Phys. Ed., 31:1061-1065, 1993. 7. Nichol, C.A., Zhang, F., and McGinity, J.W. Extrusion of acrylic films. Pharm. Res., 13(5):804-808,1996. 8. Nichol, C.A., Yang, D., Humphrey, W., Ilgan, S., Tansey, W., Higuchi, T., Zareneyrizi, F., Wallace, S., and Podoloff, D., Biodistribution and Imaging of Polyethyleneimine, a gene delivery agent. Drug Delivery
crucial role in advancing this project. 8. References[1] S. Farrell, E. A. Cech, R. Chavela, A. Minerick, and T. J. Waidzunas, "ASEE Safe Zone Workshops and Virtual Community of Practice to Promote LGBTQ Equality in Engineering," in Proceedings of the American Society of Engineering Annual Conference, New Orleans, LA, 2016.[2] President's Council of Advisors on Science and Technology, "Engage to excel: producing one million additional college graduates with degrees in science, technology, engineering and mathematics."[3] E. T. Pascarella and P. T. Terenzini, How college affects students: A third decade of research. vol. 2. San Francisco: Josey Bass, 2005.[4] E. T. Pascarella and P. T. Terenzini
develop a new solution, and patterns of fixationmay simply be redirected to a few new ideas rather than the initial concepts.References: 1. Sheppard, S., Macatangay, K., Colby, A., & Sullivan, W. (2009). Educating engineers: Designing for the future of the field. San Francisco, CA: Jossey-Bass. 2. Duderstadt, J.J. (2008) Engineering for a changing world: A roadmap to the future of engineering practice, research, and education. The Millenium Project: Ann Arbor, MI. 3. National Academy of Engineering (NAE). (2016). Grand challenges for engineering. Retrieved February 2, 2016 from http://www.engineeringchallenges.org/cms/challenges.aspx. 4. Daly, S.R., et al. (2012). Design heuristics in engineering concept
. 2nd 1st Peer Peer Num SRM SRM Rating Rating ber of Model Model PRO PRO team Rater Target Psychologica BLEM BLEM Mem Varianc Varianc l Safety =< Satisfac Conflict > Cohesiven TEAM TEAMS bers e >70% e 4.7 tion < 4.0 1.6 ess < 4.0 S 1 5 10 30 5 4.4 1.4 4.18 2 3 No SRM No SRM 5.62
Work? A Review of the Research,” Journal ofEngineering Education, July 2004.[4] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, and M. P.Wenderoth, “Active learning increases student performance in science, engineering, andmathematics,” Proceedings of the National Academy of Sciences of the United States of America,vol. 111, no. 23, June 10, 2014.[5] K. A. Smith, S. D. Sheppard, D. W. Johnson, and R. T. Johnson, “Pedagogies ofEngagement: Classroom-Based Practices,” Journal of Engineering Education, January 2005.[6] M. D. Svinicki and W. J. McKeachie, McKeachie’s Teaching Tips, 14th Ed. Belmont, CA,Wadsworth, Cengage Learning, 2014.[7] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K. Norman
, develop a multidisciplinary research groupwith exceptional advising, mentor, and tutor, as well as provide directions and skills for asuccessful life after graduation, either in graduate schools or professional work. These goalsmatch the NSF S-STEM program goals of (1) Improve Educational Opportunities for Students,(2) Increase Retention of Students to Degree Achievement, (3) Improved Student SupportPrograms at Institutions of Higher Education and (4) Increase the number of well-educated andskilled employees in technical areas of national need.The project objectives were to (a) Recruit, select and award scholarships for academicallytalented and financially needy students starting fall 2012. Preference was given to women,students of color and
. Econ. Can. d’économique 45, 1188–1219 (2012). 6. Briskin, L. & Coulter, R. P. Introduction Feminist Pedagogy: Challenging the normative. Can. J.Educ. 17, 247–263 (1992). 7. Cherubini, L., Hodson, J., Manley-Casimir, M. & Muir, C. ’ Closing the Gap“ at the Peril ofWidening the Void: Implications of the Ontario Ministry of Education”s policy for Aboriginal education. Can. J.Educ. 33, 329–356 (2010). 8. Gaskell, J. Gender matters from school to work. Resour. Fem. Res. 23, 49–50 (1994). 9. Pomerantz, S., Raby, R. & Stefanik, A. Girls Run the World? Caught between Sexism andPostfeminism in School. Gend. Soc. 27, 185–207 (2013
. The class meetings are devoted to answering questions (that students mayhave based on their viewing of the corresponding video lecture(s)) and problem solving activitiesincluding, especially, in cooperative learning groups.A number of authors 7,8,9,10 who have used the flipped approach in their courses have reported onboth the reaction of the students to the approach and, in some cases, the performance of the studentsin sections of courses that used the flipped approach compared to that of students in regular (non-flipped) sections of the same courses. Although students seem to enjoy the flipped approach,their performance seems about the same as, or in some cases even worse than, that of studentsin the regular sections. Thus Thomas and
; Technology Theresa M. Swift is an Assistant Teaching Professor in the Department of Electrical and Computer En- gineering at Missouri University of Science and Technology. She teaches the sophomore circuits and introduction to electronic devices courses for ECE majors as well as a service course in circuits for other engineering disciplines on campus. She is a member of both the ECE curriculum committee and the curriculum committee for all engineering disciplines on the Missouri S&T campus.Dr. Amardeep Kaur, Missouri University of Science and Technology, Rolla MO Amardeep Kaur is an Assistant Teaching Professor with the department of Electrical and Computer En- gineering at Missouri University of Science and
integration in college as it can be correlatedwith commitment to the institution and persistence. Thomas19 found that “students with a greaterproportion of ties outside their subgroup perform better academically and are more likely topersist. Second, similar benefits accrue to those students who develop ties with other studentswho themselves have broader ties.”Social Network AnalysisSocial Network Analysis (SNA) has been used since the 1930s in the social and behavioralsciences. Some of the major goals of SNA are to “discern fundamental structure(s) of networksin ways that (1) allow us to know the structure of a network and (2) facilitate our understandingof network phenomena.”4 Social networks can be generally defined as a group of inter-connected