AC 2012-3428: USING TECHNOLOGY TO TEACH COMMUNICATIONSAND COMMUNICATIONS TO TEACH TECHNOLOGY IN A STUDY-ABROADLEARNING ENVIRONMENTMr. David Bowles, Louisiana State University David (Boz) Bowles is a Technical Communication Instructor in the Engineering Communication Studio at Louisiana State University. He earned a bachelor’s degree in English and a master’s of fine arts in creative writing from Virginia Commonwealth University.Paige Davis, Louisiana State University Paige Davis has 22 years of experience in the College of Engineering at Louisiana State University. For the past two years, she has directed a study abroad program specifically designed for engineering students. In addition to teaching, she assists with
energy storage laboratory.The motivation of this project is to develop an interactive and computer-controlled test systemfor three different electric energy storage units that serve as a teaching-aid. This paper presents Page 25.1261.2a funded project that develops, designs, and implements an electric energy storage educationallaboratory. The laboratory is capable of demonstrating and displaying the principles,performance characteristics, and applications of electro-chemical batteries, electro-mechanicalflywheel (or flywheel battery) and supercapacitors (or ultracapacitors). The integrated systemis computerized for measurement and control hence
AC 2012-4796: A QUARTER-CENTURY OF TEACHING SPACECRAFTMISSION DESIGNDr. Wallace T. Fowler P.E., University of Texas, Austin Wallace Fowler has served on the faculty of the Department of Aerospace Engineering and Engineering Mechanics at the University of Texas, Austin, since 1965. He is a Fellow of both the American Society for Engineering Education (ASEE) and the American Institute of Aeronautics and Astronautics. He served as National President of the ASEE in 2000-01. He currently directs the NASA Texas Space Grant Con- sortium. He was the recipient of the 1985 AIAA/ASEE John Leland Atwood Award and the 1994 ASEE Fred Merryfield Design Education Award
: <25% Between 25 and 50% Between 50 and 75% >75% 25 [CompLabs]Do your students have computing laboratories available? Page 25.703.22 Please choose all that apply: Yes, maintained by the Department Yes, maintained by the College8 of 22 5/4/2011 5:37 PMUK College of Engineering Surveys - AIChE Best Practices in Teaching 2011 http://www.engr.uky.edu/survey/admin
AC 2012-4441: TEACHING CREATIVE THINKING USING PROBLEM-BASED LEARNINGProf. Ralph Ocon, Purdue University, Calumet Page 25.1245.1 c American Society for Engineering Education, 2012 Teaching Creative Thinking Using Problem-Based LearningAbstractAs global competition and technological innovation continue to challenge businessorganizations, the ability to solve diverse and complex problems has become essential forstudents in every academic discipline. While pursuing their careers, technology andengineering students will soon realize that the development of creative problem solvingskills is fundamental for success in today’s
AC 2012-3429: TEACHING COMMUNICATION SYSTEMS WITH SIMULINKAND THE USRPDr. Joseph P. Hoffbeck, University of Portland Joseph P. Hoffbeck is an Associate Professor of electrical engineering at the University of Portland in Portland, Ore. He has a Ph.D. from Purdue University, West Lafayette, Indi. He previously worked with digital cell phone systems at Lucent Technologies (formerly AT&T Bell Labs) in Whippany, N.J. His technical interests include communication systems, digital signal processing, and remote sensing. Page 25.1243.1 c American Society for Engineering Education, 2012
AC 2012-3787: EFFECTIVE ACTIVE LEARNING APPROACHES TO TEACH-ING SOFTWARE VERIFICATIONDr. Sushil Acharya, Robert Morris University Sushil Acharya, D.Eng., Associate Professor of software engineering, joined Robert Morris University in the spring of 2005 after serving 15 years in the Software Industry. With U.S. Airways, Acharya was responsible for creating a data warehouse and using advance data mining tools for performance improve- ment. With i2 Technologies, he worked on i2’s Data Mining product ”Knowledge Discover Framework” and at CEERD (Thailand), he was the Product Manager of three energy software products (MEDEE- S/ENV, EFOM/ENV and DBA-VOID), which are in use in 26 Asian and seven European countries by
propulsion systems. At Baylor University since 1998, he teaches courses in laboratory techniques, fluid mechanics, energy systems, aeronautics, wind energy, and propulsion systems. Research interests include experimental gas turbine heat transfer and wind energy.Dr. Buford Randall Jean, Baylor University Buford Randall Jean, Ph.D., Associate Professor of electrical and computer engineering, is the holder of nine U.S. patents and corresponding foreign patents in the field of microwave metrology, which have resulted in scientific and industrial instruments for a wide range of sensing and control applications. Industrial products based upon these inventions are in use world-wide. He has more than 25 years of aca- demic and
AC 2012-5589: A SYSTEM TO SUPPORT TEACHING GLOBAL SOFT-WARE DEVELOPMENTRobert P. Brazile, University of North TexasKathleen Swigger, University of North TexasMr. Matt Ray Hoyt, University of North TexasMr. Brian Lee, University of North TexasBrandon Nelson, University of North Texas Page 25.113.1 c American Society for Engineering Education, 2012 A System to Support Teaching Global Software DevelopmentAbstractTeaching students how to work in globally distributed groups is being done throughout theWorld. As such, a myriad of different tools have been created to help students work in teams andcollaborate. However, there is still
AC 2012-4057: TEACHING CIRCUIT THEORY COURSES USING TEAM-BASED LEARNINGDr. Robert O’Connell, University of Missouri, Columbia Robert O’Connell received a B.E. degree in electrical engineering from Manhattan College, N.Y., and a M.S. and Ph.D degrees in electrical engineering from the University of Illinois, Urbana. He is currently professor and Associate Department Head of Electrical and Computer Engineering at the University of Missouri, Columbia. He recently completed a Fulbright Fellowship, which he used to study modern teaching and learning methods in higher education. He won the College of Engineering Faculty Teaching Excellence Award in 2006 and 2010. He is a Senior Member of the IEEE, a Professional Member of
AC 2012-4501: TEACHING SOFTWARE SECURITY: A MULTI-DISCIPLINARYAPPROACHDr. Walter W. Schilling Jr., Milwaukee School of Engineering Walter Schilling is an Assistant Professor in the Software Engineering program at the Milwaukee School of Engineering in Milwaukee, Wis. He received his B.S.E.E. from Ohio Northern University and M.S.E.S. and Ph.D. from the University of Toledo. He worked for Ford Motor Company and Visteon as an Embed- ded Software Engineer for several years prior to returning for doctoral work. He has spent time at NASA Glenn Research Center in Cleveland, Ohio, and consulted for multiple embedded systems companies in the Midwest. In addition to one U.S. patent, Schilling has numerous publications in
mobile robotics. He is currently a lec- turer in the School of Engineering, Deakin University, where he teaches various electronics and robotics units.Ms. Robynne Hall, Deakin University Robynne Hall spent 13 years in the photographic industry designing cutting edge commercial print labo- ratories throughout Australia, maintaining and teaching silver halide and digital printing machines. As a mature age student, she returned to study and in 2002 completed an advanced diploma in electronics. She has since spent 12 months at the Gordon Institute of Technology in Geelong as a Laboratory Technician and tutor. During the past eight years, Hall has been at Deakin University as the Technical Officer for electronics
physical education teacher. He has also co-authored multiple papers and conference presentations related to physical education teacher professional development.Dr. Marcia A. Pool, Purdue University Marcia Pool is an Instructional Laboratory Coordinator in the Weldon School of Biomedical Engineering at Purdue University. She is responsible for overseeing and assessing junior level laboratories, bioin- strumentation, and biotransport, and is involved with teaching and mentoring students in the senior de- sign capstone course. Recently, she has worked with colleagues to plan and implement a problem-based learning approach to the biotransport laboratory to improve students’ experimental design skills and has modified
will read introductory information about the use of the LA. The students will then write a program to transmit several characters through the SCI and verify the output on the LA. Students are encouraged to write in C in this lab but it is not necessary and it up to the discretion of the teaching assistant and/or instructor. • Software on the LAs can be used to capture the data from the LA so that students can print the data and include it in their laboratory notebooks. 4. Keypad and Liquid Crystal Display (LCD) Laboratory – 2 weeks • Code will be provided to students that does not work. The code was written to be asserted “active low” while the hardware configuration
in Bell Labs China at Lucent Technologies from July 1999 to Jan. 2003. She had been an Assistant Professor in Hampton University from Aug. 2006 to July 2011. She joined Metropolitan State College of Denver in Aug. 2011. Her career has been distinguished by a series of awards such as the in the Provost Teaching Innovation Award in April 2010, the First Place Graduate Research Award at Global Challenges, Local Solutions: Annual Research Expo in Norfolk, Va., in April 2006, the University Dissertation Fellowship in Academic Year 20052006, the ECE Ph.D. Research Assistant Award in 2004, the member of Bell Labs President’s Gold Winner Team Award in 2000, and the University Outstanding Thesis Award in 1999.Mr. Gregory
AC 2012-4629: NETWORK-BASED DATA COLLECTION FOR A PROJECT-BASED FRESHMAN CLASSDr. Samuel Bogan Daniels, University of New Haven Dr. Daniels is an associate professor of mechanical engineering with more than 20 years of experience teaching laboratory classes. He also teaches in the multidisciplinary engineering foundation spiral cur- riculum at the University of New Haven. Research interests are in engineering education and renewable energy systems.Dr. Cheryl Q Li, University of New Haven Dr. Cheryl Qing Li joined University of New Haven in the fall of 2011, where she is a senior lecturer of the Industrial, System & Multidisciplinary Engineering Department. Dr. Li earned her first Ph.D. in Mechan- ical
AC 2012-4115: PRACTICING NEEDS-BASED, HUMAN-CENTERED DE-SIGN FOR ELECTRICAL ENGINEERING PROJECT COURSE INNOVA-TIONDr. Shawn S. Jordan, Arizona State University Shawn Jordan is an Assistant Professor of engineering in the College of Technology and Innovation at Arizona State University, where he teaches junior- and senior-level project-based electrical engineering courses.Mr. Micah Lande, Arizona State University Micah Lande is an Assistant Professor of engineering in the College of Technology and Innovation at Arizona State University, where he teaches undergraduate, human-centered design-focused, project-based engineering courses
role of the laboratory in undergraduate engineering education. Journal of Engineering Education, 94 (1), 121-130.Felder, R.,M. and Brent, R. (2003). “Designing and teaching courses to satisfy the ABET engineering criteria”. Journal of Engineering Education, 92 (1), 7-25.Kitts, C. and Quinn, N. (2004). An interdisciplinary field robotics program for undergraduate computer science and engineering education. ACM Journal on Educational Resources in Computing, 4(2), 1-22.Kolodner, J. L., Camp, P.J., Crismond, D., Fasse, B. B., Gray, J.T., Holbrook, J., Ryan, M., Puntambekar, S. (2003). Problem-Based Learning Meets Case-Based Reasoning in the Middle-School Science Classroom: Putting Learning by Design into Practice
(CISR) microscope facility, and is currently an Assistant Professor at the Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto. She is also the Academic Advisor to the IBBME Undergraduate Teaching Laboratory. Page 25.440.1 c American Society for Engineering Education, 2012 Development and Assessment of a Textbook for Tissue Engineering Lab InstructionAbstract Over the past decade, there has been a tremendous increase in the number of biomedicalengineering/bioengineering (BME/BE) programs offering lecture courses in
AC 2012-3227: COMMON MULTIDISCIPLINARY PROTOTYPES OF RE-MOTE LABORATORIES IN THE EDUCATIONAL CURRICULA OF ELEC-TRICAL AND COMPUTER ENGINEERINGMr. Mohamed Tawfik, Spanish University for Distance Education (UNED) Mohamed Tawfik received a M.Sc. degree in electrical engineering from Spanish University for Distance Education (UNED), Madrid, Spain, and a B.Sc. degree in electrical engineering from Ain Shams Univer- sity, Cairo, Egypt, in 2011 and 2008, respectively. He is an IEEE member since 2009. He is a Research Associate in the Electrical and Computer Engineering Department (DIEEC) at UNED. He is author\co- author of more than 18 publications, including conference papers, book chapters, and journal articles on remote
of instructors as possible. These experimental modulesshould be designed primarily for faculty who do not have resources for high-end experiments norwant to spend a lot of time developing, building or maintaining experiments. Furthermore, thehands-on demos and experiments must be easy for students to use without the need for a lengthylearning period.A cohesive program to develop distributed laboratories with the above features exists that wasfunded by an NSF CCLI Phase 2 Grant, which supported the development of the TESSALCenter3. TESSAL (Teaching Enhancement via Small-Scale Affordable Labs) includes labs forsignal processing4, digital logic5, power systems, electromagnetics, and control systems. Thecontrol systems modules are discussed in
. Blaabjerg, J. Pedersen, “A New Approach in Teaching Power Electronics Control of Electrical Drives using Real-time Systems”, The 7th Workshop on Computers in Power Electronics, pp. 221-226, 2000[3] R. S. Balog, Z. Sorchini, J. W. Kimball, P. L. Chapman, P. T. Krein, “Modern laboratory-based education for power electronics and electric machines”, IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 538-547, May 2005[4] R. H. Chu, D. D. C. Lu, S. Sathiakumar, “Project-based lab teaching for power electronics and drives”, IEEE Transactions on Education, vol. 51, no. 1, pp. 108-113, 2008[5] J. M. Williams, J. L. Cale, N. D. Benavides, J. D. Wooldridge, A. C. Koenig, J. L. Tichenor, S. D. Pekarek, “Versatile
Kehinde, Oladipo O. Osasona, E.O.B. Ajayi, & O.O. Akinwunmi, "Advanced Digital Laboratory: An FPGA-Based Remote Laboratory for Teaching Digital Electronics," in Proc., ASEE Annual Conference & Exposition, vol. Paper AC 2009-1206, Austin ,Tx, 2009.17. S.L. Smith and J.N. Mosier, "Guidelines For Designing User Interface Software", The MITRE Corporation Bedford, Massachusetts, USA, 1986.18. M. Collan and F. Tetard, "Lazy User Theory Of Solution Selection", in International Conference on Cognition and Exploratory Learning in Digital Age (CELDA), 200719. Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort, Addison-Wesley, Reading MA, USA.20. Jiwaji, A., Hardison, J., Ayodele, K.P
AC 2012-4329: DEVELOPING UNDERGRADUATE FPGA CURRICULUMUSING ALTIUM SOFTWARE AND HARDWAREDr. Erik A. Mayer, Pittsburg State University Erik Mayer received his Ph.D. in engineering science at the University of Toledo. His areas of focus are power electronics and embedded systems. He was an instructor at Bowling Green State University, where he worked with the Electric Vehicle Institute and taught courses in digital circuit design, microcontrollers, and renewable energy. In addition, he has worked at Visteon, designing components for hybrid vehicles. He is currently a professor at Pittsburg State University where he teaches courses supporting the embedded systems emphasis in the Electronics Engineering Technology
based biocompatibility module with laboratory and lecture components that can be easilyintegrated into an engineering or biomaterials course.Within the biomedical engineering curriculum at Bucknell University, a senior-level fabricationand experimental design course is integrated into a four course design sequence where twocourses comprise the senior capstone experience and two courses teach supplementary material.The intent of the sequence is to provide experience with a variety of skills that are valuable forboth senior design projects and in BME careers after graduation. As designed, the Fabricationand Experimental Design course is not a full-credit course, meeting only two days a week forone-hour sessions, with several lab sessions
Education: A Multiple Case Study*,” Journal of Engineering Education, Vol. 88, 1999, pp. 429-434.5. Kelly, C., Grummer, E., Harding, P., and Koretsky, M., “Teaching Experimental Design using Virtual Laboratories: Development, Implementation and Assessment of the Virtual Bioreactor Laboratory,” Proceedings of the 2008 ASEE Annual Conference and Exposition, Pittsburg, PA, 2008.6. Guimarães, E., Maffeis, A., Pereira, J., Russo, B., Cardozo, E., Bergerman, M., and Magalhães, M., “REAL: A Virtual Laboratory for Mobile Robot Experiments,” IEEE Transactions on Education, Vol. 46, No. 1, 2003, pp. 37-42.7. Window on the Workplace 2003, A Training Needs Assessment of the Biomanufacturing Workforce, North Carolina Biotechnology Center
CURRICULUM AND LABORATORY DEVELOPMENT Prof R Natarajan Former Chairman, All India Council for Technical Education Former Director, Indian Institute of Technology, Madras, India prof.rnatarajan@gmail.comAbstract:International collaboration in Higher and Engineering Education has beenreceiving increasing attention of national governments, international agencies andinstitutions of higher education during the past few decades, particularly since thegeneral acceptance of globalization worldwide. Among the goals of internationalcollaboration is the addition of an international dimension to the course contentsand teaching programs. The formalization of collaboration is
Active Learning by Lecture and Laboratory Integration in an Emerging Engineering Program A. Ieta1, R. Manseur1, and M. Hromalik1Abstract – The development of a new Electrical and Computer Engineering program provides an opportunity fordesigning and implementing an innovative curriculum. In terms of teaching methods, a combination of lecturing andhands-on learning is selected. Studio-style teaching is reported to enhance student learning, compared to theclassical lecture and lab formats. However, course organization is different and requires adaptation and innovation incourse design, content, and delivery. A studio lab was organized and new equipment was acquired for laboratorystations that
AC 2012-3742: FACILITATING GROUP WORK: TO ENHANCE LEARN-ING IN LABORATORY BASED COURSES OF ENGINEERING EDUCA-TION IN INDIADr. Sujatha J., Mission10X, Wipro Technologies Sujatha J. is academically qualified with a Ph.D. in signal processing, from Indian Institute of Science, Bangalore, India, and has more than 24 years of academic and industry experience. Over the years, Sujatha has participated in not only academic teaching and research but also in academic counseling for students, professional development programs, curriculum development, industry-institution relationship activities, and prototype development and team building. Currently, Sujatha is a core member of Research Center, Mission10X, Wipro Technologies
learning.Specific Pedagogical InnovationsSpecific pedagogical innovations that are utilized in this laboratory based, problemsolving learning environment included the following models. Proactively use a variety of active teaching and learning techniques. More qualitative than quantitative. Merely assigning more or less work based on a learner’s ability is typically ineffective. Rooted in assessment. Evaluation is no longer predominately something that happens at the end of a chapter to determine “who got it”. Assessment routinely takes place to determine the particular needs of individuals. A teaching style that provides multiple approaches to content, process, and product. Content is the input, what students