, 6:187-194, 1999. http://taylorandfrancis.metapress.com/app/home/contribution.asp?wasp=1b22a8h1wkcrvhd16dtx&referrer=pare 9. Nichol, C.A., Kim, E. Molecular imaging and gene therapy, J. Nucl. Med. 2001 42: 1368-1374 http://jnm.snmjournals.org/cgi/content/full/42/9/1368 10. Bagaria, H., Dean, M., Wong, M., Nichol, C.A., Self-assembly and nanotechnology: real-time, hands-on, and safe experiments for K-12 students, J. Chem. Ed., 2011 88 (5): 609-614. 11. Cloonan, C. A., Andrews, J.A., Nichol, C.A., Hutchinson, J.S., A Simple System for Observing Dynamic Equilibrium via an Inquiry Based Laboratory or Demonstration, J. Chem. Ed., 2011 88 (7), 975-978. 12. Cloonan, C.A., Nichol, C. A., Hutchinson, J.S., Understanding
productionmethods and system components.2.0 Partnerships: Bellingham Technical College, Western Washington University and Itek EnergyThe partners for this project each bring unique perspectives and strengths, making thiscollaboration mutually beneficial to all involved. The technical college, BTC, provides expertiseand facilities for effective and innovative technological education. BTC is a leader inprofessional technical education, employing highly skilled and industry-recognized faculty andmaintaining cutting-edge, modern laboratories. BTC offers high-quality education in trainingprograms where the training is high-tech, hands-on, and student-centered. The EngineeringTechnology: Clean Energy program prepares students to enter the workforce as a
Agency and Department of HomelandSecurity accreditation. Faculty research interests include high-performance graphics processing,cybersecurity, and databases. Numerous computer science graduate students complete theirresearch projects and masters theses in the Business Computer Research Laboratory. Thedepartment had close to twenty-five graduate students. The department had smart classrooms anddedicated undergraduate instructional laboratories for computer forensics, parallel computing,operating systems security, database security and network security.The Computer Science Department has ABET accreditation. The department has 12 full-timegraduate faculty members, all with terminal degrees, and 16 teaching assistants. Their researchinterests range
lab classes often experience dissatisfaction not because they dislike hands-on learning, but because they are overwhelmed by other components and deliverables of the labclass.At the other end of the spectrum, some hands-on learning has focused on very simplemanipulators that are designed to provide a qualitative reinforcement of concepts. One of thegoals of this NSF IUSE project is to create simple hands-on experiments that can be highlyportable for use in lecture rooms, laboratories, or even dorm rooms but can still go beyondqualitative demos and yield quantitative confirmation of engineering models. Due to advances inportable data acquisition devices, laptop computers, and affordable sensors, there is anunprecedented opportunity to make
and educational applications. Dr. Zhou has conducted a large number of funded research projects totaling over $21 million and collaborated with many experts from over 110 organizations including academia, national laboratories, and industries. Dr. Zhou has published more than 350 technical papers, five copy- righted CFD codes, and two patents. She has received numerous awards including the R&D 100 Award in 2004, the Medal Award by the American Iron and Steel Institute in 2005, the J. Keith Brimacombe Memo- rial Lecture Award by the Association of Iron and Steel Technology (AIST) in 2010, the 2012 Chanute Prize for Team Innovation, and the Gerald I. Lamkin Fellow Award for Innovation & Service 2017-2018
ASEE North Central Section Outstanding Teacher Award (2004) and the CASE Ohio Professor of the Year Award (2005).Dr. Karen A. High, Oklahoma State UniversityDr. Michael W. Keller, University of TulsaDr. Ian M. White, University of Maryland Ian White is an Assistant Professor in the Fischell Department of Bioengineering at the University of Maryland. White received his Ph.D. in electrical engineering from Stanford University in 2002. He worked at Sprint’s Advanced Technology Laboratories from 2002 to 2005. He then served as a post- doctoral fellow at the University of Missouri until 2008 before becoming a faculty member at the Univer- sity of Maryland.Prof. Bradley J. Brummel, University of Tulsa Bradley Brummel is
mainly focus on Smart Structures Technology, Smart Connected Health, Structural Control and Health Monitoring and Innovative Engineering Education.Dr. Xiaorong Zhang, San Francisco State University Dr. Xiaorong Zhang is an Associate Professor in Computer Engineering in the School of Engineering at San Francisco State University (SFSU). She is the Director of the Intelligent Computing and Embedded Systems Laboratory (ICE Lab) at SFSU. She has broad research experience in human-machine interfaces, embedded systems, and engineering education. She is a recipient of the NSF CAREER Award to develop the next-generation neural-machine interfaces (NMI) for electromyography (EMG)-controlled neurore- habilitation. She is a
who were interested in exploring research opportunities inengineering faculty laboratories. An application process brought in five applicants whointerviewed with engineering faculty who had indicated interest in taking a CREATE scholarinto their laboratories for a research experience. These five scholars will spend 40 hours duringthe Spring 2021 semester in the research laboratories undergoing an undergraduate researchexperience. At the end of the semester an evaluation of the scholars' performance will berequested from the faculty research mentors. The performance evaluation incorporates questionsthat were compiled by the CREATE Principal Investigator team and included: 1. how often theymet with the scholar, 2. if they worked directly with
science. Interns wereexpected to work on their project from their home approximately forty hours per week under theremote supervision of their graduate student or postdoc mentor.In preparation for the remote program, the TTE Program Director discussed the technical needsof each project with the mentors and interns. Most interns confirmed they had sufficient internetaccess, computing capabilities, and data storage. An external hard drive was purchased for oneparticipant, and another was mailed a lensless camera by her research team. Interns were enrolledin a one-unit summer course to ensure they had access to all UC Berkeley remote resources,including library databases, software downloads, and remote control of laboratory machines.Most importantly
School, where he was a principal intern. His scientific research focused on the immunology of M. tu- berculosis, the bacterial pathogen that causes tuberculosis. He currently works with undergraduate and graduate researchers to investigate the evolution of microbes, and to improve how undergraduate students learn science at the university. c American Society for Engineering Education, 2017 Exploring Experiences of Graduate Teaching Assistants in Teaching Professional Development GroupsIntroductionMany universities rely on graduate teaching assistants (GTAs) to teach college courses or theircomponents (e.g., laboratories, recitations, seminars). For example, for doctoral
at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology. Dr. Johnson’s research focuses on design tools; specifi- cally, the cost modeling and analysis of product development and manufacturing systems; computer-aided design methodology; and engineering education. c American Society for Engineering Education, 2018 Advanced Manufacturing Research Experiences for High School Teachers: Effects on Perception
Paper ID #29306An Advanced Technological Education Project for High ValueManufacturing: Lessons LearnedDr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is a professor in the Department of Engineering Technology and Industrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology. Dr. Johnson’s research focuses on
-understand educationmodules have the potential to enhance undergraduate students’ understanding of materials,mechanics, and even thermal concepts.It has been well-recognized that solid mechanics is one of the most critical and fundamentalengineering topics in multiple engineering education programs, such as aerospace, civil, industrial,mechanical, and petroleum engineering disciplines. Current solid mechanics education, however,mainly focuses on theoretical analysis with limited experimental demonstration. In mostengineering programs, the theoretical analysis is delivered to students via a series of courses, suchas Statics, Dynamics, Materials of Mechanics. The experimental demonstrations are only includedin one laboratory course related Materials
-yearuniversity-based technical programs toupdate curricula to meet the expectationsof industry by supplying qualifiedtechnicians and technologists who haveextensive hands-on experience with currentdesign tools. By developing a curriculumthat includes hands-on re-configurableelectronics laboratories, we will be able toprovide students in these programs state-of-the-art training tools that match theexpectations of industry.FPGAsFPGAs were created approximately 15years ago by the Xilinx Corporation [3]. Figure 1. FPGA Block DiagramXilinx is still the largest manufacturer ofthis technology in the world [10]. FPGAsare not only programmed through a traditional schematic fashion, they are also programmedusing
Jersey Institute of TechnologyDr. Raquel Perez-Castillejos, New Jersey Institute of Technology Dr. Raquel Perez-Castillejos is an assistant professor of biomedical engineering at the New Jersey Institute of Technology. Her research (www.tissuemodels.net) focuses on the development of tools for cell and tissue biology using micro- and nanotechnologies. Raquel obtained her Ph.D. with the National Center of Microelectronics in Barcelona. She was a postdoctoral fellow at the Laboratory of Miniaturized Systems (Univ. S˜ao Paulo, Brazil) and later at Harvard University with the Whitesides group. Dr. Perez-Castillejos is co-director of the NSF-funded REU summer program for neuroengineering, coordinator of the new cross
choosing from a curriculum including courses fulfilling bothcertificate and degree requirements so the anticipated time-to-degree is not extended. As theycomplete the course work required to earn the certificate and after they are certified, trainees willreceive peer-mentoring training and serve as peer mentors to junior trainees and students in theirgroups and laboratories, a model which has proven valuable in graduate academic settings [23].Trainees will be required to participate in a minimum of two summer internships, one in anotherdepartment while working in their first summer with their student research team on projectsstemming from the internal collaborative research grants and another internship working in asubsequent summer at the type of
attrition in engineeringprograms across the country. As such, there is a drastic need for a proven model whicheliminates the first-year mathematics bottleneck in the traditional engineering curriculum, yetcan be readily adopted by engineering programs across the country. Such is the focus of thiswork.The Wright State model begins with the development of a novel first-year engineering mathcourse, EGR 101 Introductory Mathematics for Engineering Applications. Taught byengineering faculty, the course includes lecture, laboratory and recitation components. Using anapplication-oriented, hands-on approach, the course addresses only the salient math topicsactually used in core engineering courses. These include the traditional physics
3.36California State University Fresno F 2009 4.10 4.59 3.95 S 2010 4.26 4.57 4.04 S 2011 4.74 4.67 4.19At University of North Carolina Charlotte, the course ETCE 3163L is required for the bachelor’sdegree in civil engineering technology, as well as the bachelor’s degree in constructionmanagement. There were 70 student responses from this course. The course description is: • ETCE 3163L. Structures and Materials Laboratory. Laboratory designed to evaluate structural materials commonly encountered in the civil and construction environments. Basic beam, truss and frame experiments will be conducted. Standard laboratory and field tests
Paper ID #39049Board 367: Reflections from an Interdisciplinary Team Research Projectduring a 10-week NSF REU ProgramProf. Eric Markvicka, University of Nebraska, Lincoln Dr. Eric Markvicka is an Assistant Professor in the Department of Mechanical and Materials Engineering at the University of Nebraska-Lincoln (UNL). There, he also holds a courtesy appointment in the De- partment of Electrical and Computer Engineering and the School of Computing. At UNL Dr. Markvicka directs the Smart Materials and Robotics Laboratory, an interdisciplinary research lab that is creating the next generation of wearable electronics and
Bryan ISD PSJA ISD Ave teacher salary (%) Aldine ISD 0 50 100 150 200 % Relative (100 = Texas' average) Fig. 1. Comparison of ISDs near TAMU [2]The program aimed to recruit 10 in-service teachers and 2 pre-service teachers each time for 3summers. The 6-week program was originally divided into 3 periods. The program providedhands-on laboratory activities to complement the theoretical sessions. 1) Weeks 1, 2: Program covered orientation, lab safety, and
Ph.D from North Carolina State University in the Fall of 2020.Eileen Johnson, University of Michigan Eileen Johnson received her BS and MS in bioengineering from the University of Illinois at Urbana- Champaign. She previously worked in tissue engineering and genetic engineering throughout her educa- tion. She is currently pursuing her PhD in biomedical engineering at the University of Michigan. After teaching an online laboratory class, she became interested in engineering education research. Her research interests now are focused on engineering student mental health and wellness.Mr. Joseph Francis Mirabelli, University of Illinois, Urbana - Champaign Joseph Mirabelli is an Educational Psychology graduate student at
-campus activitiesand laboratory space availability. Although no Young Scholars or Research Experiences inMentoring (REM) programs occurred, the center was able to impart three virtual ResearchExperiences for Undergraduates (REU) students (33% Black, Latinx, or Indigenous students and67% women) and a virtual 2-week Research Experiences for Teachers (RET) program. EWDsees these challenges as a way to rethink the norms of university education and pre-collegeefforts and embraces the opportunity to reinvent these areas.Young Scholars (YS). In the YS program, high school students are recruited across the fiveCISTAR institutions, paired with a research mentor, and work during the length of the summerprogram (approximately six weeks) in a chemical
earned her PhD in Biokinesiology from the University of Southern California and completed her post doctoral training at the Pathokinesiology Laboratory at Rancho Los Amigos National Rehabilitation Center. Dr. Burnfield holds adjunct faculty appointments at Creighton University, the University of Nebraska - Lincoln, University of Nebraska Med- ical Center, and University of South Dakota. Dr. Burnfield’s research and development activities focus on improving independence, fitness, health, and well-being of individuals with physical disabilities and chronic conditions.Dr. Linxia Gu, University of Nebraska-Lincoln Associate Professor Dept. of Mechanical & Materials EngineeringDr. Adam Wagler, University of Nebraska
, 6:187-194, 1999. http://taylorandfrancis.metapress.com/app/home/contribution.asp?wasp=1b22a8h1wkcrvhd16dtx&referrer=pare 9. Nichol, C.A., Kim, E. Molecular imaging and gene therapy, J. Nucl. Med. 2001 42: 1368-1374 http://jnm.snmjournals.org/cgi/content/full/42/9/1368 10. Bagaria, H., Dean, M., Wong, M., Nichol, C.A., Self-assembly and nanotechnology: real-time, hands-on, and safe experiments for K-12 students, J. Chem. Ed., 2011 88 (5): 609-614. 11. Cloonan, C. A., Andrews, J.A., Nichol, C.A., Hutchinson, J.S., A Simple System for Observing Dynamic Equilibrium via an Inquiry Based Laboratory or Demonstration, J. Chem. Ed., 2011 88 (7), 975-978. 12. Cloonan, C.A., Nichol, C. A., Hutchinson, J.S., Understanding
Fluids Laboratory, and Guided Missiles Systems, as well as serving as a Senior Design Project Advisor for Mechanical Engineering Students. Her research interests include energy and thermodynamic related topics. Since 2007 she has been actively involved in recruiting and outreach for the Statler College, as part of this involvement Dr. Morris frequently makes presentations to groups of K-12 students, as well as perspective WVU students and their families. Dr. Morris was selected as a Statler College Outstanding Teacher for 2012, the WVU Honors College John R. Williams Outstanding Teacher for 2012, and the 2012 Statler College Teacher of the Year. c American Society for Engineering Education
endeavors include conducting pedagogical studies on learning technologies and remedial math preparation for engineering students. He instructs courses in computer vision, computer graphics, computational electrical engineering, electromagnetics and characterization of semiconductor materials.Dr. Mandoye Ndoye, Tuskegee University Mandoye Ndoye received the B.S.E.E. degree from the Rensselear Polytechnic Institute, Troy, NY, in 2002, the MS degree in Mathematics and the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, IN, in 2010. After completing his Ph.D. studies, he joined the Center of Applied Scientific Computing, Lawrence Livermore National Laboratory, as a Research Staff
Virginia University Melissa Morris is currently a Teaching Associate Professor for the Freshman Engineering Program, in the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University (WVU). She graduated Summa cum Laude with a BSME in 2006, earned a MSME in 2008, and completed her doctorate in mechanical engineering in 2011, all from WVU. At WVU, she has previously served as the Undergraduate and Outreach Advisor for the Mechanical and Aerospace Engineering department and the Assistant Director of the Center for Building Energy Efficiency. She has previously taught courses such as Thermodynamics, Thermal Fluids Laboratory, and Guided Missiles Systems, as well as serving as a Senior
. Anagnos, A. Lyman-Hold, C. Marin-Artieda, and E. Momsen, “Impact of engineering ambassador programs on student development.” Journal of STEM Education: Innovations and Research 15 (3), 14-20. 2014.3. C.R. Smaill, “The implementation and evaluation of a university-based outreach laboratory program in electrical engineering.” IEEE Transactions on Education 53 (1), 12-17, 2010.4. L. Nadelson and J. Callaghan, “A comparison of two engineering outreach programs for adolescents,” Journal of STEM Education 12 (1), 43-54, 2011.5. J.R. Amos and M-C. Brunet, Pre-post assessment in a speaking communications course and the importance of reflection in student development of speaking skills, ASEE Conference and Exposition, June 25-28
1978; and the Ph.D. degree from the University of Colorado, Boulder in 1991. Dr. DeLyser, a member of the U.S. Air Force between 1965 and 1986, held a teaching position at the United States Air Force Academy, served as a development engineer at the Air Force Weapons Laboratory at Kirtland AFB in New Mexico and was the Requirements Officer for the Nellis AFB Ranges in Nevada. Prior to 2000, his research areas included pedagogy, outcomes based assessment, the study of periodic gratings used as antennas and in antenna systems, high power microwave interactions with large complex cavities, anechoic chambers, and anechoic chamber absorbing materials. Since 2000, he has been concentrating on engineering education pedagogy
peer reviewed conference proceedings articles in these areas. He has B.S. in ME, and both M.S. and Ph.D. in IE. He is a member of ASEE, INFORMS, and a senior member of IIE.Dr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is an associate professor in the Department of Engineering Technology and In- dustrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology. Dr. Johnson’s research focuses on design tools