Paper ID #17468Developing Engineering Leaders Using a Reflective Autobiographical Exer-cise ˜ Massachusetts Institute of TechnologyDr. David Nino, David Ni˜no, Ph.D., is a Senior Lecturer in the Bernard M. Gordon-MIT Engineering Leadership Program, where he has a strong commitment to the development of leadership among undergraduates and graduate students across MIT and among engineers, more broadly. In addition to MIT teaching, he is active in an international consortium of engineering leadership centers and a founding officer of the Engineering Leadership Development Division of the American Society of
Paper ID #15487The Charles Sturt University Model - Reflections on Fast-track Implementa-tionProf. Euan Lindsay, Charles Sturt University Professor Euan Lindsay is a Mechatronic engineer, a discipline that integrates computers, electronics and physical hardware. Prof Lindsay’s PhD investigated whether remote and simulated access alternatives to the traditional in-person laboratory experience could provide the same learning outcomes for students. Prof Lindsay’s work in Remote and Virtual laboratory classes has shown that there are significant differ- ences not only in students’ learning outcomes but also in their
Paper ID #17414Assessing a Scaffolded, Interactive, and Reflective Analysis Framework forDeveloping Ethical Reasoning in Engineering StudentsDr. Lorraine G. Kisselburgh, Purdue University, West Lafayette Lorraine Kisselburgh (Ph.D., Purdue University) examines organizing and communicative practices in sociotechnical contexts, particularly collaboration in engineering design teams, spatial and material in- fluences on organizing, and gendered practices in technological settings. She has backgrounds in com- munication, human performance, and computer science, and over twenty years experience designing and supporting
ofinspections in software industry (i.e. to save rework cost, effort, and time), academia should alsoprioritize training students with early quality assurance skills (i.e. inspections) during SDLC.Therefore, this research reports the results from a practical training experience to help studentsimprove their understanding of inspection which in turn, would improve their inspectionperformance. This paper presents results of an academic study on the effect of reflection(training) technique on thirteen graduate and twenty-six undergraduate students on theirinspection performance. The participants individually inspected two different requirementdocuments using fault-checklist method and recorded faults pre and post reflection. We analyzedthe impact of
Paper ID #15817Changing Student Behavior through the Use of Reflective Teaching Practicesin an Introduction to Engineering Course at a Two-Year CollegeMr. Richard Brown Bankhead III, Highline College Richard B Bankhead III is the engineering department coordinator at Highline College. At Highline Colleg,e Richard is committed to developing the behaviors of successful engineering students in transfer students as well as preparing them academically for the challenges of junior level engineering courses. Richard has taught at Highline since 2004 and was awarded the Faculty of the Year Award at Highline Col- lege for the 2009
Paper ID #14864Utility of Post-Hoc Audio Reflection to Expose Metacognition and StrategyUse by First-Year Engineering Students for Different Problem TypesMs. Heidi Cian, Clemson University Heidi Cian is a PhD student enrolled in Clemson University’s Curriculum and Instruction program with a concentration in science education. Heidi is a former high school biology and anatomy teacher.Dr. Michelle Cook, Clemson University Michelle Cook is an Associate Professor of Science Education in the Eugene T. Moore School of Educa- tion at Clemson University.Dr. Lisa Benson, Clemson University Lisa Benson is an Associate Professor of
way to let students knowabout upcoming activities and offer a way to get in touch with us, the mentors. This site is knownas the BSC CyberCenter, and has been entirely designed and developed by the mentors.At this point, the site has grown to include all of these functionalities and more. We continuallyupdate the site to reflect the activities that are coming up soon, and we also use the site as a wayfor students to register for our events. The CyberCenter includes registration/accountfunctionality, so that students who register for the site can receive regular email updates aboutupcoming events and activities. Additionally, members of the site are allowed to register for allof our events before the general registration is opened.In addition
the uncertainty of divergent problems byconstructing multiple problem spaces and then engaging in reflective practice or reflectiveconversation as they interpret and evaluate alternatives. These metacognitive strategies enableengineers to deal with uncertainty by continuously engaging in acts of self-evaluation, self-monitoring and reflection as they work through the engineering design process.10, 13 The use of acollaborative environment has been found to help engineers reduce and manage uncertainty.10, 14Shin and his colleagues14 explain that working in teams allows engineers to reduce ambiguity bydistributing the knowledge and skills and collectively making decisions. The ability to logicallyand persuasively argue for or against a decision
study also seek to establish best practices that could beimplemented more broadly in other introductory engineering courses. Therefore, the purpose ofthis paper is to explore a developmental approach to engineering success that allowsintrospection of the individual and building of community. Data were collected throughout thequarter in an attempt to answer the following research questions: • What can we learn from an emphasis on intentional activities and reflective writing to help first-generation students develop an “engineering identity” and ownership over their engineering major? • Does a course focused on relationship building, diversity, and social awareness improve first-generation students’ sense of
interests include interdisciplinary collaboration, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include exploring disciplines as cultures, interdisciplinary pedagogy for pervasive computing design; writing across the curriculum in Statics courses; as well as a CAREER award to explore the use of e-portfolios to promote professional identity and reflective practice. c American Society for Engineering Education, 2016 Student Persistence Through Uncertainty Toward Successful Creative PracticeAbstract: To increase creative practice among students in engineering and other
gender. The high numbers in Mechanical Engineering reflect the overall size, relativeto Chemical Engineering (second largest), and Civil Engineering. As can be seen from the bottomof Table 2, the average school wide GPA was 2.57. The average GPA in the programs follows thesame order as the aforementioned minimum entrance requirements by program. This result is tobe expected, as those who did the best in first year would be expected to continue to achieve highresults in their second year. On the other hand, the material in Dynamics is more aligned with theinterests and strengths of Mechanical and Civil Engineers than with Chemical Engineers. Thisalignment may indicate that students are not necessarily enrolled in the program that is bestaligned
-disciplinary courses and concepts, and providing learning opportunities for students toconnect, integrate, and synthesize knowledge (8).Two underlying assumptions are at play when considering how integrative learning takes place:(1) students do not naturally integrate, or translate, their experiences to novel complex issues orchallenges (9); (2) how a student integrates knowledge across contexts and over time takes work,and is unlikely to occur without commitment from the educational institution (8). The mostprominent pedagogies of integration include service-learning, problem-based learning,collaborative learning, and experiential learning (10). What is essential to each of thesepedagogies is the practice of reflection; “these pedagogies necessitate
interested in all aspects of engineering education, including how to support engineering students in reflecting on experience, how to help engineering educators make effective teach- ing decisions, and the application of ideas from complexity science to the challenges of engineering education.Dr. David P. Crismond, City College of New York David P. Crismond is an Associate Professor in the School of Education at City College, City University of New York, 138th St. & Convent Ave. NAC 6/207b, New York, NY 10031; dcrismond@ccny.cuny.edu. His research interests relate to engineering design cognition and instruction, and helping teachers build their own design pedagogical content knowledge, create their own video-based
types of service opportunities they resonate with the most, see how toconnect with the surrounding community, and be able to reflect on their experiences and see thevalue of service. The course meets the ABET Criterion 5 by broadening of the role engineeringcan make in the world and seeing engineering as service, by planting a seed for seeingopportunities for lifelong learning and engaging the community.There are three major assignments to meet the course requirement. The first assignment is to readfirst two chapters of ‘Service Learning: Engineering In Your Community’1 by Marybeth Lima,PhD and William C. Oakes, PhD, PE. The first two chapters lay out the detailed linkage betweenengineering and service learning. After the reading assignment the
Machine Controlled By ArduinoAbstractThis paper presents an Arduino-controlled Spirographtm-style drawing machine suitable for useat a Maker event. Visitors can use the machine to make unique artwork to take home.Instructions to build the drawing machine are provided. Potential pedagogical uses of thedrawing machine range from learning hands-on construction techniques, to programming,trigonometry, and interaction with a user through sensors.OverviewThis paper provides instructions on how to build a pantograph drawing machine using anArduino UNO microcontroller, a reflectance sensor, two rc-servo motors, and a sheet of foamcore poster board. It is based on the work of Erik Brunvand, Ginger Alford, and Paul Stout [1,2]and extended by using a
’ stories 3. This interview approach consists of threeinterviews: focused life history, details of the experience, and reflection on the meaning3. Afocused life history interview provides an opportunity to allow the interviewee to tell theinterviewer about him or herself spanning back to past lived experiences up to the present. Adetails of the experience interview asks the interviewee what they actually do in a particularexperience in order to put their experience within a certain context. Finally, a reflection onmeaning interview asks the interviewee to reflect on an experience’s meaning by looking at “howthe factors in their lives interacted to bring them to their present situation” 3. Since Dolbeare andSchuman’s interview approach was designed
program value to indicate the exceptional learningopportunities SA programs offer.11, 12, 13, 14, 15, 16A review of literature provides an array of assessment tools that may be used as a stand-alone orin concert with other tools (See Table 1). Each of these tools provides information that enablesresearchers and SA faculty to better determine how programs enhance student learning.The tools are designed to indicate competency development in students in areas such asincreased cultural understanding, improved communication skills, strengthened language ability,flexibility, and open-mindedness.2, 3, 4, 9, 10, 12, 15, 16, 17, 18 In addition, this skill development oftenresults in personal reflection and growth that changes students in terms of their
justice in the United States (750-1250 words). ENGR 195A Reflection Paper 2: In his essay, Dyson gives some historical examples of technological innovations that he claims have increased social justice. Considering the technological innovations in your discipline, please describe another example and indicate how it has increased social justice in the U.S. (250- 500 words) Aerospace Engr 171A – Reflection Paper 3 (250-500 words): Consider the technological innovations in aerospace engineering in general and aircraft design in particular, describe a historical example and indicate how it has increased social justice in the U.S. and the world. Aerospace Engr 172A – Reflection Paper 3 (250-500 words
demonstrates thecompetency and also if the pass/fail bar has been set appropriately.The course syllabus for ENCN470 states: “Much of a professional engineer’s work relies less onthe “technical” skills and knowledge developed at university and more on the “professional”competencies in which that technical knowledge is applied. This is reflected in the CompetencyProfiles developed by IPENZ for graduate engineers; it includes the following items: Investigation and Research Risk Management Teamwork Communication The Engineer and Society”The IPENZ Competency Profiles map well with some of the ABET Criterion 3 a – k StudentOutcomes as well as with the ASCE 2nd Edition Body of Knowledge (BOK) outcomes withrespect to professional
freshman or capstone engineering classes that have a fairly broad scope of learningobjectives. This paper describes the design and assessment of a service-learning module in arequired junior-level course in probability and statistics for engineering students at a large publicuniversity, which typically enrolls 90-100 students. This course is ideal for service learningbecause students struggle with the material, complaining it is “too theoretical”, and can feelanonymous in a large lecture course. Yet, there are few examples of how to successfullyintegrate service-learning ideas, including reflection activities, into a high-enrollment course thattraditionally focuses heavily on quantitative fundamentals.This paper details the design, student work
-specific self-efficacy revolves around social support in the sense ofencouragement and constructive feedback – elements of a community of practice supported by the situatedlearning framework and PBL. This process can be guided by “cognitive apprenticeship,” which is a means oflearning-by-doing where the thinking process underlying complex, problem-solving skills is made visiblethrough teaching methods such as modeling, coaching, scaffolding, articulation, and reflection 10-11.CPBL vs PBLCollaborative Project-based Learning (CPBL) is a revised PBL model developed by Dong and Warter-Perez 12to address the specific learning needs of under-prepared minority students. It has been implemented in severalengineering courses and a positive impact on
their choice of major, begin developing their professionalidentity, and begin defining their professional goals. To assist students in developing theirprofessional identity and behavior, an immersive, first-year experience with shadowingcomponents was developed to renovate the Introduction to Bioengineering course at theUniversity of Illinois at Urbana-Champaign. This type of experience is designed to exposestudents to the professional environment with a didactic and self-reflective curriculum, therebysupporting students in their early professional development. The class was taken from a passiveseminar series that broadly covered the bioengineering field to one split into three career-centered foci, each with an overview and experience: i
Paper ID #16055Fostering Empathy in an Undergraduate Mechanical Engineering CourseDr. Joachim Walther, University of Georgia Dr. Joachim Walther is an associate professor of engineering education research at the University of Georgia (UGA). He is a director of the Collaborative Lounge for Understanding Society and Technol- ogy through Educational Research (CLUSTER), an interdisciplinary research group with members from engineering, art, educational psychology and social work. His research interests range from the role of em- pathy in engineering students’ professional formation, the role of reflection in engineering
andthe process of students growing and developing into members of the community, whether definedas the academic or professional community.The context of this paper and its reflection on the use of outcomes to design and operate anengineering program is the proposal for significant changes in the ABET criteria. Discussionsamongst the ASEE community have included webinars, a virtual conference, and a town hallmeeting at the 2016 ASEE conference.4 The goal of this paper is to provide an example of howoutcomes have been used as a driver and motivator for innovative change in engineeringeducation.ValuesThe outcomes currently defined in Criterion 3 are a clear statement of the values the broadengineering community holds, such as use of foundational
mental processing coupled with dialogicinteraction with other learners, where the learner reflects on novel insights and perspectives. Wehave integrated these considerations into our course design. In the next section, we describe thepurpose of this investigation, followed by the course structure.Research PurposeThis paper presents findings from a comparative analysis of the learning outcomes ofengineering students who participated either completely online mode or in a hybrid-mode, whichincluded both online and in-class components. For both learning groups, we utilized the samepedagogy designed to enhance ethical reasoning (the SIRA framework).20 We implemented thispedagogical framework at the graduate-level and assessed student learning and
, successfully accomplish and reflect upon an activityreferred to as a compassion practicum. The compassion practicum sought to begin thedevelopment of a critical consciousness in students. Students’ projects fall into two categories:(1) a service learning type project which must in some way improve the quality of life of othersand involves a minimum of 15 hours of actual service; and (2) a guided, extensive visit of ananimal rescue society farm in which students confront animals typically used in biomedicalresearch projects and reflect on the entire experience.IntroductionBiomedical engineering is the application of engineering principles and techniques to medicine.It combines expertise in engineering with expertise in medicine and human biology to
Paper ID #14502Engineering Education: Moving toward a Contemplative Service ParadigmDr. George D. Catalano, Binghamton University Professor of Biomedical Engineering, Binghamton University Previously member of the faculty at U.S. Military Academy and Louisiana State University. Two time Fullbright Scholar – Italy and Germany. c American Society for Engineering Education, 2016 Ten Steps for Improving Critical and Reflective Thinking Skills in the Engineering Classroom: Moving towards a Contemplative Paradigm AbstractThe present work seeks to develop and implement
. Through this progression they were able to master most if not all of the challengesand learning outcomes.In this paper we will look at some examples of sessions based on these learning blocks and wewill examine if the camp met the expectations of the campers based on pre- and post-activitiesfor particular learning blocks and the end of camp surveys. We will also look at their level ofengagement during activities as well as how formative assessment was built into the campthrough one of the self-reflection pieces that was part of the process.Materials and MethodsThe primary design strategies for our camp were based on the implementation of learning blocks,which were strongly focused on formative assessment strategies, Blooms Taxonomy
accompanyingrubric(s), reviews them with the assessment coordinator, and meets with, trains, and collectscompleted assessments from all instructors who teach the course. The assessment chair alsomeets with and receives feedback from the instructors and constructs a reflective summary forthe course. The chair then compiles all of the assessment results, including the reflectivesummary, and transmits them to the assessment coordinator.At the discretion of the assessment chair (and approved by the assessment coordinator),assessment devices may include qualitative, quantitative, and/or mixed direct and indirectmeasures. Rubrics are used to assess essay questions, projects, portfolios and presentations, andthey are provided to the instructors who conduct and