Paper ID #38700Studying the Development of Design Thinking of Undergraduate Engineer-ingStudents in Singapore: Qualitative Reflection Analysis (Research)Dr. Eileen Fong, Nanyang Technological University Eileen Fong, PhD, is a Senior Lecturer at School of Materials Science and Engineering (MSE) at Nanyang Technological University (NTU) in Singapore. She is also currently the Associate Chair (Students) at MSE, responsible for student matters and admissions. She teaches third-year MSE undergraduates, and have received several teaching awards including the prestigious Nanyang Education Award for School (2019) and College (2021
. Thisfull paper explores the impact of self-paced and online Portable intercultural modules (PIMs) onthe intercultural learning goals of the students enrolled in a junior-level system thinking course.The PIM used in the class aims to improve learners’ teamwork and communication skills. ThePIM contains five activities, including watching videos about cultural diversity and empathy,survey, quizzes, and exercise that applies learning towards intercultural collaboration. The studentsin the system thinking course were asked to complete the PIM and a reflection assignment. Theresearch questions that we intend to answer for this study are: RQ1: What domains of interculturalcompetence, as defined by the AAC&U IKC Value rubric, are represented through
. Establishing an environment of trust (362) 2. Creating an empowering space (362-363) 3. Setting a Clear Focus (363) 4. Creating an open space (363) 5. Encouraging Collaboration (363)These five values reflect our objectives in integrating a community mapping and participatorydesign methodology into our project. We assumed that our student participants (like the youthAmsden and VanWynsberghe engaged with) were seldom invited to shape the design ofprograms or engage in bottom-up critique. We created an iconographic mapping in lieu of acommunity map as an invitation to discuss/critique the whole gamut of places and people thatcomprised their experiences in the [engineering school].The iconographic map (see Figure 1) functioned much like a
diversity of the MHCC Head Start community, andensuring that the research was feasible for families. Data collection spanned approximately 1year and included in-depth qualitative interviews via phone or video before, in the middle, and atthe end of the program and during the fall of the child’s kindergarten year. Data collection alsoincluded observations of all program events, tracking of program participation, anddocumentation of other program artifacts, such as pictures, reflections, family communication,and meeting notes. Each case study family was assigned a research liaison that maintainedongoing contact with the family and spoke either Spanish or English, based on the family’spreference. All data were collected and analyzed in the preferred
. The interviewer asked open-endedfollow-up questions to prompt participants to reflect on these emotions, repeating this process forall eight contexts.We conducted and recorded hour-long interviews with 20 undergraduate students described inTable 1. We transcribed excerpts of interview recordings of four contexts: doing a problem setfor Mechanics 1 alone, doing a problem set for Mechanics 1 with friends, making something in amakerspace for yourself, and making something in a makerspace for Electronics 1. The firstauthor conducted line-by-line open coding [11] of three interview transcripts from a second-,third-, and fourth-year participant each, from which themes of emotional configurationsdeveloped organically. She shared the coded
scores for all eight items were averaged to calculate the mean self-efficacystrength scores. Lower scores were indicative of weaker self-efficacy percepts, while higherscores were indicative of stronger self-efficacy percepts. The computed Cronbach’s α was.89, reflecting adequate internal consistency.Outcome Expectation (OE). Ten measures were used to determine participants’ OE, inspiredby Lent et al. (2003). Participants were required to answer their level of understanding withstatements that contained positive outcomes resulting from obtaining a Bachelor of Sciencedegree in engineering (e.g., “graduating with a BS degree in engineering will likely allow meto earn an attractive salary”). Their answers were ranked from 1 (strongly disagree) to 5
to provide diverse perspectives on pressing topicswithin academic and non-academic communities. Individuals participating in panels are usuallybrought together to express a wide range of viewpoints and to combine ideas, research, andexperiences. We see an opportunity to extend panel discussions to have enduring impact bybroadly distributing the data synthesized during the panel discussions. The use of paneldiscussions as a research endeavor has the potential to broaden researchers' ways of knowing, yetknowledge transfer from panel conversations to peer-reviewed publications has to this point beenminimal.This paper highlights a methodology for analyzing panel discussions, discourse content, andpanelist reflection to produce research results
these environments. However,whether LGBTQ students experience self-concept or social fit may determine avoidancebehaviors that may ultimately lead them to abandon a STEM major and their STEM career goals.The disclosure of LGBTQ identity to others then reflects both higher self-concept fit and socialfit in that LGBTQ students can be their “true selves” in STEM environments and have theirLGBTQ identities validated by their peers. The decision to compartmentalize LGBTQ identitieswithin STEM environments reflects social identity threat posed by a lack of self-concept and/orsocial fit. Given what prior research has indicated about the LGBTQ climate in STEM, then,these environments would be expected to pose more social identity threat than many
, e.g., course department, as confounders for model to remove. Using this method,for the difficult dimension, the model learns to identify words that are more correlated withhigher difficulty ratings but not correlated with quality ratings.From these word lists, two of the authors manually annotated the words that were valid membersof the different dimensions based on fixed criteria. For example, the word “helping” would countas helpful but not clear because helpful words should reflect positive social behavior while clearwords indicate effective communication. Next, we adapt these lists to the original CCE dataset bycomputing the nearest neighbors to the words in each dimension, using word embeddings trainedon the CCE text data [22]. Computing
and assessed in different contexts.More specifically, Chinese immigrant STEM workers comprise a high percentage of all foreign-born workers in the U.S. Therefore, comparing the Chinese and American teamwork assessmentsystems can be conducive to constructing a generalizable understanding of teamwork assessmentin cross-cultural contexts [11].In addition, much literature discusses how to develop and assess teamwork. For example,portfolios, reflections, observations, tests, rubrics, and questionnaires are common teamworkassessment methods. However, less literature outlines how teamwork in engineering educationmight be implemented in different cultural contexts. We must fill this gap because abundantliterature already points to the importance and
slowlyincreased (Cunninghame et al., 2016), this group still remains largely underrepresented in STEMdisciplines (Moon et al., 2012). This discrepancy in representation reflects larger issues ofmarginalization in STEM fields and higher education at large. Current support structures fordisabled people remain ineffective, as accessing necessary resources requires navigatingphysical, cultural, and bureaucratic barriers (Groen-McCall et al., 2018). These barriers onlycontinue to widen for disabled students planning to pursue engineering careers (Prema & Dhand,2019), as seen in the high unemployment rate for disabled scientists and engineers, which isgreater than that of the entire U.S. labor force (Lee, 2010; NSF, 2017). Yet, disability is rarelyincluded
from a Critical Feminist lens. Kinzie[1] reflected on their personally discouraging experience with science in college and theorized tounderstand inequities in women’s participation with four pathways: ‘nevers,’ ‘departers,’‘joiners,’ and ‘persisters.’ [13] examined STEM mentoring programs in their meta-analysis usinga Critical Feminist approach. Gender, oppression/patriarchy, challenges within institutions, andsystemic challenges were identified as obstacles for girls and women in STEM and the authorscritiqued STEM mentoring programs failed to address concerns for individuals who do not fitinto the binary gender category and the intersectional oppressions. There are many cases wherethe authors apply a Critical Feminist lens without explicitly
contributing to the team’s work, keeping the team on track, expecting quality,having relevant knowledge and skills, and interacting with teammates. The survey questionsrooted in conflict research (Gonzalez & Hernández, 2014, and Harrison & Klein, 2007) wereused to probe three types of conflicts: task, process, and relationship. We used the termsdisagreement and conflict interchangeably in this paper.The survey also collected demographic data. The sample demographics reflected the gender andracial distribution of the engineering student population at our institution, of which 13% werefemale, one third identified as Hispanic, one third as Asian, 16% as White, 6% as AfricanAmerican, and the rest as either mixed race, Native American, Native
education with focus on engineering design, problem-based learning, co-curricular involvement and its impact on professional formation, and the role of reflection practices in supporting engineering undergraduates as they transition from student to professional. ©American Society for Engineering Education, 2023 Validation of a Measure of Design Framing AgencyAbstractIn this research paper, we investigate the structure and validity of survey data related to students’framing agency. In order to promote increased opportunities for students to engage in and learnto frame design problems that are innovative and empathetic, there is a need for instruments thatcan provide information about
. Structured deliverables provideguidance as to what elements of a design process may be appropriate to move through theengineering design process. The scaffolding to emphasize prototyping and adoption of aprototyping mindset may help as a pedagogical tool [33]. Artifacts that are created in thesecourses reflect tangible evidence of activity. From the idea to realization, there are means todescribe the role, purpose, and creation of prototypes. Gerber & Carroll [19] describe theconnection and process of prototype creation. Houde & Hill [20] discuss different types ofprototypes as what do prototypes prototype (function, looks-like). Makerspaces also provideadditional context for the tools, mindsets, and community of practice [21-23, 11].Design
describe the family life of their co-workeror employer as part of their answer. This background information benefits the interviewer as itwill help frame the context and dynamics the participant had to contend with. However, thisinformation would be omitted from the final narrative as this background is unnecessary for thereader. It is important to remember that although this information would not be included in thefinal constructed narrative, its influence persists through the remainder of the data collection andinterpretation.Smoothing is inherently an iterative and reflective process that researchers often refine throughexperience [11]. Most literature on narrative methods typically discusses the philosophicalunderpinnings of narrative analysis
, I feel it is valuable to disclose my position as an author, including the identities I hold,the privileges I am afforded, and the perspective I bring to understanding engineering researchculture. I am a Black, cisgender man, and a Ph.D. student studying engineering education. I amalso a recipient of a stipend from the National Science Foundation (NSF), so I am a directbeneficiary of the engineering research “culture,” or system as it stands. This work-in-progresspaper is directly tied to my own experience and the experiences of colleagues that are alsoengaging in engineering research culture. Through rich conversations and reflection about thespaces in which engineering researchers operate, I began to question the underlying valuesystems
. • Campus life offered by the department is very stimulating. • If I am/were going to college next year, I would continue with this department. • There’s a real sense of community here. 2. Reflection Survey. Besides the above survey, we also created another open-ended anonymous survey with the following reflection questions to gain deeper insight into students’ experiences in the departmental learning community. • Do you find the presentations/workshops conducted by the ExCITE Program students helpful? Why or why not? If helpful, in what ways? If not, please explain why. • How did participating (or not participating) in the ACM and ACM-W club meetings/activities (including the take-apart
members within the same team. Perhaps most of the time, the student teamsfunction just fine. Yet instructors might actively or passively notice the existence ofdysfunctional teams, where team dynamics were impaired, and team members developednegative attitudes towards one another [4-5]. Furthermore, in other situations, social loafingmight exist within student teams but sometimes hardly get instructors’ attention [6]. When suchsituations happen, the benefits of cooperative learning are compromised and at risk [7]. Scholars and practitioners have proposed ways of trainings to support student team success.Using Goal-Role-Process-Interpersonal-Relationship models, students wrote memos to reflect ontheir team dynamics and development [8]. Students
iterativeprocess [42]. However, the vast majority of the design activities involved more of a trial anderror or tinkering approach to building the prototype.Table 3. NGSS Promoted in Engineering Interventions Category N NGSS Physical Science Core Ideas 24 NGSS Life Science Core Ideas 10 NGSS Earth & Space Science Core Ideas 8 NGSS Engineering Design Performance Expectations* 3-5 ETS1-1: Define a simple design problem reflecting a need or a want that includes 33 specified
evidence-basedpractices to achieve transformative, systemic and sustainable change that will increase thegrowth rate in the number of BIPOC and women obtaining undergraduate/graduate engineeringdegrees and establish a future growth rate that can substantially close the participation gaps. Theshare of engineering degrees awarded to women and/or those who are Black, Indigenous andPeople of Color (BIPOC) in the United States over the past decade reflects only slow progress inthe efforts to increase representation of these groups at the undergraduate and graduate levels.And for men who identify as Black, Indigenous, and/or People of Color, the percentage ofmaster’s and doctoral engineering degrees being awarded has actually declined in recent years[1
know”. Some codes appear both in theFacilitators and the Barriers data, with different interpretation: for example, prep coded a response to thebarriers question when a student said they didn’t feel adequately prepared to succeed in their next class,and it coded a response to the confidence question when the student reflect on the extent to which thepreparation that they do have equips them for success.A. Most frequent categories for facilitators and barriersWhen coding responses of CSE majors in the eight participating classes to the question: What makes youfeel good about your plans to take the next course in this sequence?, the most frequently seen category wasKnowledge, which includes the codes prep and cs-skills. Students feel confident
, p. 3] Firstly, we chose to conduct single two-hour longinterviews (rather than employing quantitative or psychometric instrumentation or collectingother forms of qualitative data). We iterated on the interview protocol by developing an initialdraft of a protocol, having one interviewer practice it with another, revising the protocol,implementing pilot interviews with three graduate students with workforce experiences, revisingthe protocol again, soliciting feedback from our advisory board (who brings expertise in ethicsand DEI), revising yet again, implementing initial interviews, writing reflective memos aftereach interview, and continuously asking which aspects of the interview process were workingwell or needed revision. We were thus
interests inengineering, (4) students’ choices and intentions to persist, (5) final reflection, and (6) end/signoff. Interviews were conducted via Zoom and audio recorded. Interviews ranged in length from30-to-90 minutes.The four graduate students (SMC, SJB, BAC, KM) were responsible for conducting theinterviews. Their positionalities, identities, and lived-experiences influenced how they interactedwith the participants. Each interviewer was first interviewed by another member of the team tobetter understand the personal experiences and biases that were elicited by the interviewprotocol. This provided insight into the experiences the interviewer would be likely to try andconfirm in the data collection process, and could therefore be mindful of
the data" (p.56). However, engineers are often more familiar with quantitative methods and summarizingtheir findings using numbers [2], which substantially limits the use of qualitative methods.According to Jackson, Drummond, & Camara [3], the goal of qualitative research involves"understanding human beings' richly textured experiences and reflections about thoseexperiences" (p. 22). As engineers have become familiar with qualitative methodologies [1-2],researchers have begun to explore different types of approaches to illuminate the humanexperience. It is clear that different engineers, engineering students, and engineering facultyexperience their education and careers differently, which modern studies have only begun todescribe [4-6
National Science Foundation (NSF). Asthe most diverse representation across Black engineering graduate students was desired, snowballsampling was followed. In total, 33 Community Members representing 11 institutions and diverse types(PWIs, HBCUs, International) were represented. Community members were compensated with a $100Amazon gift card. Narrative interviews composed of a narration and conversational phase were conductedand ranged from 1.5-2 hours in duration. Interviews prompted Community Members to reflect on theirexperiences navigating engineering paying special attention to any aspects uniquely correlated with theiridentity. Interview Protocol The initial prompt used was, “We are hoping
related to the student’s educational journey. During the participatory workshop, staff felt that they could voiceconcerns and ideas of how to improve the existing system.Preliminary conclusionsThis work in progress shows there is an opportunity to use participatory design methods to improve themultivocality of the design of a mentoring experience in an engineering school. There has been acceptance and eveninterest in participating, overall, from the students and teaching faculty. Interviews with faculty and the workshopwith advisors might have served as a reflective practice, in line with what [56] showcased in their study oncollaborative course reflection. We believe that this participative process might be the first step toward building
test usage in engineering courses. Tests and exams are typically heavily usedin FECs like statics, dynamics, thermodynamics, and other courses in various engineeringdisciplines. Understanding why engineering instructors heavily rely on tests to assess studentlearning in these courses can be crucial in promoting the use of more diverse types ofassessments, such as portfolios, concept inventory, reflection-based practices, project-basedpractices, and intentionality in terms of designing, administering, and interpreting tests, butresearch has been scarce on documenting research on this topic. Conversations around why instructors make certain course decisions typically involve thecontexts these instructors are situated in, emphasizing how
around making researchopportunities accessible and also suggest what can be done in class instruction to provide similarbenefits to student curiosity. In the current study, we found that students reported that classesencouraged their curiosity when the students encountered uncertainty that led to informationseeking, were able to see connections to real world applications and when they had engaginginstructors. Redundant content, overwhelming classes, time constraints, motivation to get the“right” answer, and critical professors were described as obstacles to students’ curiosity inclasses. Students also reflected on how their experiences of curiosity in research compared totheir classes in ways that aligned with the identified supports for and
]. Inter-rater reliabilitywas not calculated numerically due to a focus on consensus [21], [27]-[30].Results & DiscussionPractitioners' definition of engineering intuition did not vary by level of experience but did varyby gender. Men more frequently defined the concept in terms that reflected Innate whereaswomen leaned on Experience in their definitions. Despite these differences in how engineeringintuition was defined, there was largely consensus in participants’ responses to how engineeringintuition is developed. All participants attributed the development of intuition either completelyor in part to Experience, underscoring the notion that intuition develops alongside expertise, asexpertise is largely developed through experience [8]-[12