AC 2012-5275: DEVELOPING AND DESIGNING UNDERGRADUATE LAB-ORATORY WIRELESS SENSOR NETWORK EXERCISESDr. David Border, Bowling Green State University David A. Border, Ph.D., holds a principle research interest in electronic information systems. This field includes digital communication and networking and intelligent networked devices. His current work in- cludes wireless sensor networks. Prior research included work on signal bandwidth compression and signal specific data encoding techniques. His technology application interest includes networked systems. Typical teaching duties include junior- and senior-level courses in the Electronics and Computer Technol- ogy (ECT) program. Within this course set are the
and education, development of intelligent manufacturing control systems, and real-time localization in wireless sensor networks. Bal is currently a tenure-track Assistant Professor in the Miami University, Department of Engineering Technology, at the Hamilton campus. He teaches undergraduate courses in the areas of computerized instrumentation, electromechanical control, industrial automation, and computer-aided manufacturing. Page 25.1461.1 c American Society for Engineering Education, 2012 Virtual Manufacturing Laboratory Experiences for Distance Learning Courses
University in 1983, and his master’s of science from University of Dayton in 2003. He teaches a number of lecture and laboratory courses in circuit analysis, semiconductor devices, and data acquisition and control.Prof. Michael J. Kozak, University of Dayton Michael Kozak is an Assistant Professor in the Department of Engineering Technology at the University of Dayton. He primarily teaches classes related to mechanical engineering technology, and his main research interest is in pedagogy. Page 25.1344.1 c American Society for Engineering Education, 2012 The Rubber Band Rule and Other
Ph.D.M.E. in 2006 from Texas A&M University. His research interests include computational fluid dynamics, rotor dynamics and turbo machinery, industrial power generation and refrigeration, heat transfer, fluid power, education, and the use of technology in education. He teaches courses in the area of thermal and fluid sciences, such as fluid power, applied fluid mechanics, thermo- fluid laboratory, and wind power systems. He holds memberships in ASME, AIAA, and ASEE.Dr. Rob Garrick, Rochester Institute of Technology Robert D. Garrick, Ph.D., P.E., is Associate Professor in the Department of Manufacturing and Mechanical Engineering Technology at the Rochester Institute of Technology (RIT) and thermo-fluids curriculum Co
from the laboratory work. 3.57 4 4 3.32 3.5 4Overall, this laboratory instructor was effective at teaching this course. 3.67 4 4 3.49 3.5 4 However, student comments revealed something quite unexpected. In both casesstudents voiced a strong affinity toward lab exercises that were unstructured. These unstructuredlab assignments that simply stated a system requirement were preferred to those that included thesequence of steps necessary to complete the lab. Some examples from the unstructured ControlSystems labs included: • “Probably one of the better labs I’ve had with the amount of equipment and
laboratory experience as first semesterfreshmen in a three credit electrical systems course with a weekly laboratory component. Thisgoal of this course is to introduce a wide variety of electrical components and their application toelectrical circuits and systems. Teaching and learning is accomplished through two fifty-minutelecture periods and a one hundred minute laboratory period each week for fifteen weeks.Laboratory exercises complement lecture topics and include the investigation of the behavior ofseries, parallel, and combination resistive circuits, diodes, solar cells, relays, motors, capacitors,inductors, transformers, and operational amplifiers. Traditionally, students have been asked towrite seven to ten formal lab reports throughout the
Multisim and Mathsoft Mathcad into a Digital Communication Technology Curriculum XXX NAME HERE XXX XXX PROGRAM NAME HERE XXX XXX DEPT. NAME HERE XXX XXX UNIVERSITY NAME HERE XXX XXX CITY STATE POSTAL HERE XXXAbstractTechnology program texts that seek to teach digital communication fundamentals follow basicdevelopments that can be modeled in laboratory classes using computer-based electronicslaboratory simulators and computer-based symbolic mathematics systems. For technologyprograms, this is particularly important as the laboratory work reinforces foundational datacommunication
101 communications modules, and an end of semester practicalapplication project. This hybrid solution allows for a relatively low-cost and flexible datacommunications laboratory experience. This paper presents an overview of the experiments thathave been developed for a data communication course, and discusses the main challenges andteaching methods that the author has used to encourage student’s active learning andengagement. Assessment data indicates that there was improvement in achieving the studentlearning outcomes for the course as a result of the introduction of the new hybrid laboratoryexperiments and the teaching methods used.1. IntroductionNowadays, modern technologies are interdisciplinary and often require knowledge of
]. Torespond to the industry needs for FPGA design skills, universities are updating their curriculumwith courses in hardware description languages and programmable logic design. Although mosttraditional electrical and computer engineering programs have updated their curriculum toinclude topics in hardware description language and programmable logic design (FPGA/CPLD),only 19.5 % of 4-year and 16.5 % of 2-year electrical and computer engineering technologyprograms at US academic institutions currently have a curriculum component in hardwaredescription language and programmable logic design [3]. To effectively meet the nextgeneration’s workforce needs, the electrical and computer engineering technology curriculummust be current, relevant, and teach
programs across in the SoT aredeveloping and offering on-line courses in multiple disciplines. In this article we emphasize theonline Electrical Machinery (EM) course development and implementation for currently enrolledin Michigan Technological University students and industry representatives looking to improvetheir knowledge in the subject. The online EM course will be offered in Track A of summer 2012and will consist of online learning modulus, online quizzes, exams, and intense laboratories. Dueto the hands-on nature of educational strategy, the laboratory component is an integral part ofany course offered in the SoT, and the on-line EM course is no exception. The enrolled studentswill participate in intense laboratory sessions scheduled
online, with laboratories being offered in a ‘low-residency’format. This low-residency format will require students to complete a group oflaboratory assignments on two or three Saturdays during the semester. Weanticipate future efforts to offer both the lectures and laboratories completelyonline.SPSU’s approach, in collaboration with the TCSG, to the development of thesecourses was to require consistency in the format of each of our courses byimplementing a standard template. This will facilitate courses to have the samelook, feel, tools, and structure. Faculty developing these courses must havecompleted our Teaching Academy for Distance Learning (TADL) training courseprior to writing courses. To ensure quality course development and structure
, Canada, Ireland, Scotland, England, France, Czech and Slovak Republics, Finland, the Netherlands, Switzerland, and Taiwan His early experience involved teaching in Alberta and at universities in North Dakota and New Jersey.Dr. Kathryne Newton, Purdue University, West Lafayette Kathy Newton is a professor in the Technology Leadership and Innovation Department at Purdue Uni- versity. Her teaching and scholarly interests are in the areas of industrial distribution, quality control, innovation, and graduate education. She recently completed a three-year appointment as Department Head. Prior to her appointment at Purdue University in 1993, she spent seven years teaching for Texas A&M University’s Department of
processes hasbeen identified as one of the major competency gaps in engineering & technology education.Models such as Learning Factory and Manufacturing Integrated Learning Laboratory (MILL) aredesigned to improve students’ learning through hands-on experiences. The MILL model,developed by the Wayne State University, focuses on integrated learning. The core of the MILLconcept is the use of projects spanning multiple courses to help students gain hands‐onexperiences in design and manufacturing. It involves the coordination of realistic hands-onactivities in targeted courses around the unifying theme of designing and fabricating a functionalproduct. These activities are suited for easy implementation in a typical design andmanufacturing teaching
SPSUmain campus in Marietta, Georgia, over a three or four weekend period during the semester.Some EET laboratory exercises may also be offered remotely utilizing equipment such as the NIELVIS II platform provided by National Instruments 6 for teaching Circuits and Electronics labs.The ultimate goal is to establish regional locations around the state at TCSG schools that willserve as facilities where students can go to complete their laboratory work, instead of having totravel to Marietta to do so. Agreement for the use of such facilities will have to be worked outbetween SPSU and the TCSG schools involved.Preliminary data on enrollment figures have yet to be provided by the TCSG who have beendealing with issues related to the changing over to a
doped amplifiers, wireless security, and nanotech- nology for wireless communications. He is a member of ASEE and a Senior Life Member of IEEE.Mr. Robert C. Decker, Mohawk Valley Community College Robert Decker is a professor in the Center for Math, Physical Science, Engineering, and Applied Tech- nology at Mohawk Valley Community College in Utica, N.Y. He holds a master’s degree in electrical engineering and is a member of IEEE. Decker was a Co-principal Investigator in the NSF-CCLI project ”Instructional Laboratory for Visualization & Manipulation of Nanoscale Components for Engineering Technology Students” with Professor Salahuddin Qazi of the SUNY Institute of Technology, Utica-Rome
applications of electronic components and controllers utilized on industrialequipment. Laboratory sessions focus on instrumentation, programming, downloading,and wiring discrete input / output devices.Specific Course Competencies of the course include the ability to: 1. Identify major applications of programmable logic controllers in industry, transportation, construction, and environmental control. 2. Identify, discuss, and describe the purpose and function of the primary components utilized in open and closed loop process control systems. To assist in this outcome, each student will develop an appropriate theoretical base, and a complete comprehension of the associated
AC 2012-4561: MATHEMATICAL MODELING AND SIMULATION US-ING LABVIEW AND LABVIEW MATHSCRIPTDr. Nikunja Swain, South Carolina State University Nikunja Swain is a professor in the College of Science, Mathematics, Engineering and Technology at South Carolina State University. He is involved in teaching various courses in engineering technology and computer science. He holds a Ph.D. in electrical/energy engineering, a M.S. in electrical and computer engineering, and a M.S. in electrical engineering. He is a member of ACM, ACM SIGITE, IEEE, IEEE CS, and ASEE. He is a registered Professional Engineer (PE) in South Carolina and TAC/ABET evaluator for Computer engineering technology and electrical engineering technology
energy storage, including advanced battery systems for hybrid electric vehicles. Yeh is also experienced in developing formal degree programs and professional development programs for incumbent engineers, community college instructors, and high school science and technology teachers. He is the PI and co-PI of several federal and state funded projects for course, curriculum, and laboratory development in advanced automotive technology.Dr. Gene Yeau-Jian Liao, Wayne State University Y. Gene Liao is currently Director of the Electric Transportation Technology program and Associate Pro- fessor of engineering technology at Wayne State University. He received a B.S. in mechanical engineering from National Central University
first semester graphics class modeland extract shop drawings of a miniature steam engine, then they fabricate it in a team in the Page 25.1076.2second semester machine tool laboratory. In this same period the MET faculty also soughtimproved civility, and a spirit of inclusion, in the classroom. As a faculty we now moreconsistently communicate to students that by practicing professionalism skills in the classroomstudents are more competitive when seeking internships and early career positions. Successfulstudents recognize this relationship, and this student buy-in offers an improved academicenvironment for both students and faculty.UMaine MET
AC 2012-3756: A FORMAL RESEARCH STUDY ON CORRELATING STU-DENT ATTENDANCE TO STUDENT SUCCESSMr. Jason K. Durfee, Eastern Washington University Jason Durfee received his B.S. and M.S. degrees in mechanical engineering from Brigham Young Univer- sity. He holds a Professional Engineer certification. Prior to teaching at Eastern Washington University, he was a military pilot, an engineering instructor at West Point, and an airline pilot. His interests include aerospace, aviation, professional ethics, and piano technology.Dr. William R. Loendorf, Eastern Washington University William R. Loendorf is currently a Full Professor of engineering and design at Eastern Washington Uni- versity. He obtained his B.Sc. in engineering
about 10% weight of the course. Students spend timefor this project beyond scheduled hours. Although the project announcement is done at thebeginning of the semester and is due at the end, the actual work needs about three weeks to Page 25.1377.3finish.Digital Electronics (ENTC 219): In this introductory course to Digital Logic, students design andimplement hardware into an FPGA that controls a mobile platform. It is a team project consistingof two members. It spans over the last 4 weeks of formal laboratory time and carries a weight of15% of the course.Advanced Digital Circuits (ENTC 249): This course primarily involves digital system
Facilities Layout course wasredeveloped to incorporate the use of the software. The newly designed course is currently beingtaught, so the paper will also discuss the students’ evaluations of the new software and theredeveloped course.IntroductionIn the mid-nineties, the Engineering Technology Department at the University of Dayton decidedto eliminate certain laboratory courses and integrate the laboratory exercises into the associatedlecture course. The Facilities Layout Design lecture/laboratory courses were the first courses toimplement this initiative. One of the reasons for implementing this initiative was the lowenrollment in the combination lecture/laboratory courses since the courses had to be taken as co
ASSIGN GRADES IN THIS COURSE.7 IN ORDER TO GET GOOD GRADES ON TESTS AND 15 RATE THE FAIRNESS OF THE INSTRUCTOR INASSIGNMENTS, I HAD TO KNOW THE COURSE MATERIALS ASSIGNING GRADES.OUTLINED IN THE SYLLABUS AND DISCUSSED IN CLASS8 THE INSTRUCTOR’S PRESENTATIONS WEREINFORMATIVE.Table 2 shows the questionnaires for the Student Teaching Evaluation at the University,the class received an average of 4.9 out of 5.0 when compared to the averages of theDepartment (4.2) and College (4.2). Plans have been implemented to continue monitoringthe results of future class performances.8. SummaryThe automation laboratory is developed to conduct a project-based for a lecture. Resultsshow that the test performance improves in all main topic areas when
. Sekhar’s primary teaching and research focus is in the areas of biomedical and process control instrumentation and clinical engineer- ing.Dr. Jai P. Agrawal, Purdue University, Calumet Jai P. Agrawal is a professor in electrical and computer engineering technology at Purdue University, Calumet. He received his Ph.D. in electrical engineering from University of Illinois, Chicago, in 1991, dissertation in power electronics. He also received M.S. and B.S. degrees in electrical engineering from Indian Institute of Technology, Kanpur, India, in 1970 and 1968, respectively. His expertise includes analog and digital electronics design, power electronics, nanophotonics, and optical/wireless networking systems. He has
teaching, and engineering mechanics. Before coming to academia, he was a Design Engineer, Maintenance Supervisor, and Plant Engineer. He is a registered Professional Engineer.Mr. Thomas Perry P.E., American Society of Mechanical EngineersDr. Allan T. Kirkpatrick P.E., Colorado State University Page 25.210.1 c American Society for Engineering Education, 2012 ASME’s Vision 2030’s Import for Mechanical Engineering TechnologyAbstractIn recent years, various professional societies or individuals have put forth statements outlininghow engineering and engineering
and instruction delivery methods related to distance learning.Prof. Chandra R. Sekhar, Purdue University, Calumet Chandra R. Sekhar is a member of the faculty of electrical and computer engineering technology at Purdue University, Calumet. Sekhar earned a bachelor’s degree in chemistry from the University of Madras (India), a diploma in instrumentation from Madras Institute of Technology, and a master’s degree in electrical engineering from University of Pennsylvania. Sekhar’s primary teaching and research focus is in the areas of biomedical and process control instrumentation and clinical engineering.Dr. Jai. P. Agrawal, Purdue University, CalumetProf. Ashfaq Ahmed, Purdue University, Calumet
take several senior level classessuch as Design of Machine Elements, CADD, Fluid Power, Heating, Ventilation and AirConditioning (HVAC), Robotics, and Mechanical Vibration. We started teaching Vibration,which is a lecture/lab course, formally in the fall of 2006 and until this project, did not have‘hands-on’ activities beyond a ‘Helmhotz resonator project’ and an industrial visit. Common touniversities nationwide and worldwide, severe budget cuts limited the development of additionalhands-on activities and experiments crucial to a thorough practical understanding of vibration Page 25.430.2and noise analysis.Three years ago the author developed
&M University Ben Zoghi is the Victor H. Thompson endowed Chair Professor of electronics engineering at Texas A&M University, where he directs the College of Engineering RFID Oil & Gas Consortium and teaches applica- tion of emerging technologies. Over the past 10 years, Zoghi has led or been involved in the development of many RFID and sensor implementation and solutions. He is a frequent speaker for association and in- dustry events on RFID, wireless sensor network, technology applications in oil and gas, and petrochemical industries globally.Dr. Joseph A. Morgan, Texas A&M University Joseph A. Morgan is a Full Professor in the Electronics Engineering Technology program at Texas A&M
engineering, and engineering problem solving. Hands-ondesign and development projects, however, were supported by in-house course material. Orientation to academic and social life in college o Freshman year in college: Academic and social life expectation and reality o Available university support for academic and social concerns o Engineering and engineering technology professions o Academic success strategies for studying engineering technology o Electronics engineering technology program requirements o Get introduced to departmental faculty, support personnel, and laboratories Exposure to real-world engineering o Industry co-op experience presentation by a junior-level
andeducation of an engineer is now compared to that of an engineering technologist and othertechnologists (e.g., in terms of math/theory in the education, in terms of ability to work hands-on,and in terms of job roles in a interdisciplinary team). Students are now better exposed totechnology-related degree options other than engineering.Second, a technology professor joined the EGR120 teaching team. The course has since beenbroken into four curriculum blocks, taught “round-robin” by four professors: an EE section, anME section, a general engineering profession and projects section, and a hands-on/laboratory(technology-professor) section. The hope is that students who are dissatisfied with engineeringwill now have a contact and familiarity elsewhere in