(e.g., control of dynamicsystems, mass transfer). In this logic, students spend the majority of their time learning a longsequence of engineering “fundamentals” before they are deemed competent to engage in creativedesign problem solving in their final-year capstone projects.3 This approach is understood as“exclusionary” not in the sense of being elitist but in the more general sense of seeking to keepout that which does not belong, including those persons (or those facets of persons) not in linewith the dominant decontextualized, narrowly technical-analytic way of problem solving withinengineering. Lectures and focused problem sets remain the mainstay educational modalitieswithin university engineering education, even as wide-ranging
Paper ID #12051The Impact of Two-Way Formative Feedback and Web-Enabled Resourceson Student Resource Use and Performance in Materials CoursesDr. Stephen J Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept
outside theirmajors.One way to promote engineering and liberal arts is to use projects with an innovative andentrepreneurial emphasis.32 Students are challenged by big questions that are open ended andthat allows them to pursue creative solutions, typically in capstone projects. This helps studentsto see their engineering education in the global context.Another way to integrate engineering and liberal arts is to develop minors such as “TechnologyManagement and Policy” that is available at the University of Virginia.33 As an interdisciplinaryminor, it is open to all undergraduates. This program helped engineering students find relevantliberal arts courses that are a vital component of a professional study. If these courses areimportant for a minor
academics first and everything else last”), in addition to their courses having very little socialcontext. This may be indicative of a typical problem in engineering education – first-yearcourses are interesting and project-based, but then in the second year, all the intense prerequisitesmust be taken, which limits students’ abilities to engage with social issues within or outside theircourses. Additionally, some students chose to be more involved with sororities or sports teams Page 26.643.6rather than volunteer groups, and their schedules did not allow for both activities.Table 2: Demographics of Students Interviewed and EPRA Survey Results
Science Education at Clemson University, with a joint appointment in Bioengineering. Her research focuses on the interactions between student moti- vation and their learning experiences. Her projects involve the study of student perceptions, beliefs and attitudes towards becoming engineers and scientists, and their problem solving processes. Other projects in the Benson group include effects of student-centered active learning, self-regulated learning, and incor- porating engineering into secondary science and mathematics classrooms. Her education includes a B.S. Page 26.874.1 in Bioengineering from the
Paper ID #11690A Cross-Sectional Study of Engineering Student Perceptions and ExperiencesRelated to Global ReadinessDr. Sarah E Zappe, Pennsylvania State University, University Park Dr. Sarah Zappe is Research Associate and Director of Assessment and Instructional Support in the Leonhard Center for the Enhancement of Engineering Education at Penn State. She holds a doctoral degree in educational psychology emphasizing applied measurement and testing. In her position, Sarah is responsible for developing instructional support programs for faculty, providing evaluation support for educational proposals and projects, and working
studentsproximal36. For the smaller lecture sections and recitations of less than 30 students, theresearcher stayed in the middle or back of the room to afford a view of student activity aroundthe room. Page 26.1021.8Course activities including recitations, review sessions before each midterm, and a midtermexam were also observed by a member of the research team with accompanying fieldnote record.Artifacts, including course syllabi, homework assignments and solutions, exams and examsolutions, projects, worksheets, textbooks, etc. were collected for later analysis. In totality, over95 hours of course activities were observed during the fall 2013 semester
Initiatives,” includedspeakers from The Gatsby Charitable Trust and The Kavli Foundation, both private foundationssupporting neuroscience research, as well as researchers from the United States and Japan whodescribed their contributions toward the BRAIN Initiative and the Brain/MINDS project,respectively. The panelists described funding priorities and international efforts to understandthe fundamental mechanisms of the brain.STEM Policy ActivitiesAlthough my sabbatical goal included attendance at meetings and workshops related tobiomedical engineering policy, the opportunity arose to participate in activities related toScience, Technology, Engineering, and Math (STEM) policy issues.I served as the AIMBE representative for a workshop held by the
, subject to areview of academic progress and financial eligibility. Some students were offered less than twoyears of support due to limited availability of project funds near the end of a grant period, and asmall number of students left the program.Activities. All S-STEM program activities were run or coordinated through the CoE’s EventsOffice with assistance from the Diversity Programs Office (DPO). The mission of the DPO is toprovide academic and non-academic support to increase enrollment, retention, and graduationamong under-represented minorities and women, but DPO services are available to all CoEstudents. The DPO collaborates with the university’s Learning Resource Center (LRC) toprovide academic support services and essay writing support
but not solarge as to invalidate the tools. Steps should be considered to educate students about potentialbias.IntroductionTeamwork is an integral part of Engineering and Engineering Education.1 Well-designed groupand team projects can help students gain valuable teaming skills, and accrediting bodies requirethese skills of engineering graduates.2,3 But teamwork is not without its problems. Social loafingand “I better do it myself, if I want an A” syndrome are part of many peoples experiences withgroup and teamwork.4 A well-designed peer evaluation process can improve the studentexperience and lead to more powerful learning outcomes.Peer evaluation can be used to foster a better team experience and to equitably recognizeindividual student’s
Paper ID #12684General Engineering Plus: Creating Community in a Flexible yet TechnicalEngineering DegreeDr. Malinda S. Zarske, University of Colorado, Boulder Malinda Zarske is the Engineering Master Teacher for the General Engineering Plus program at the Uni- versity of Colorado Boulder. A former high school and middle school science and math teacher, she has advanced degrees in teaching secondary science from the Johns Hopkins University and in civil engi- neering from CU-Boulder. Dr. Zarske teaches engineering design in First-Year Engineering Projects and Engineering Projects for the Community, a sophomore-level course
usefulness of the material offered herein, the author wishesto acknowledge that portions of this material are no doubt better suited for upper-divisioncourses or capstone project courses. However, if appropriately adapted and carefully interpretedby an experienced instructor, there are also elements of this material that should prove Page 26.1273.21meaningful and valuable for most students in engineering mechanics and physics courses.Appendix: A Typical Value for the Parameter Most of the results produced by means of the cubic law are fairly accurate if 0 2 . It is thenprudent to obtain a typical value of for a real-world situation
Paper ID #13373Living-Learning Communities Improve First-Year Engineering Student Aca-demic Performance and Retention at a Small Private UniversityDr. William John Palm IV P.E., Roger Williams University William Palm is Assistant Professor of Engineering at Roger Williams University, where he teaches Engi- neering Graphics and Design, Computer Applications for Engineering, Machine Design, Biomechanics, and Capstone Design. Prior to joining Roger Williams, he worked as a product design engineer and con- sultant and taught at the U.S. Coast Guard Academy and Boston University. He holds a PhD in Mechanical Engineering from MIT
% participated in college servicebreak trip; 36% participated in service learning and another one-third performed communityservice as part of a class. Service to others is part of the departmental culture. The departmentprovides student many opportunities for service including a Civil Engineering specific servicelearning course, service-related capstone design projects, and service extracurricular groups.Again, the values of these women most likely play a very strong role in their participation, andthis department affords these women many opportunities to do so.Conclusions and Applicability to Other ProgramsThe analyses of the incoming student survey, focus group discussions, and senior exit surveyindicate that the overall culture of a program is
existing UW study abroad infrastructure.Learning TheoryEngineering Rome incorporates project-based experiential learning, which has shown to be atype of active learning that is crucial for the development of an appreciation for lifelong learning.Lenschow14 explains that: “Project-based learning (PBL) is winning ground in industry and at a slower rate in universities and colleges. PBL is pedagogically based on constructivist learning in a setting represented by Kolb’s learning cycle. Kolb observed that students learn in four different ways: Kolb’s idea is that the cycle shall be repeated. The cycle is best started with concrete experience, proceeding to abstraction.”14The basic classroom premise of the course involves
and learning process. The goal of this project is to explore the educational philosophiesenacted in the most impactful undergraduate classrooms, according to graduate students’perceptions, in order to give the new educator a foundation for their own course design process.Previous ResearchWhy Examine Students’ Perceptions of Learning Environments?At the start of the new semester, students enter a classroom not as “blank slates,” but withparticular conceptions about teaching and learning based on their prior experiences5. As a result,the effects of learning activities and perceptions of classroom interactions among the instructorand the students may differ by student5,8. Further, research has also shown that students’conceptions about teaching
standards involved in designing engineering curricula. He is currently conducting research on an NSF project led by Dr. Stephen Krause, focused on the factors that promote persistence and success for undergraduate engineering students.Dr. Eugene Judson, Arizona State University Eugene Judson is an Associate Professor of for the Mary Lou Fulton Teachers College at Arizona State University. His past experiences include having been a middle school science teacher, Director of Aca- demic and Instructional Support for the Arizona Department of Education, a research scientist for the Cen- ter for Research on Education in Science, Mathematics, Engineering and Technology (CRESMET), and an evaluator for several NSF projects. His
pedagogical research and undergraduate research projects, and his research interests include manufacturing laboratory pedagogy and writing pedagogy.Dr. Wendy M. Olson, Washington State University Vancouver Dr. Wendy Olson is a tenured Associate Professor of English and specialist in rhetoric and composition. She serves as the Director of Composition and Writing Assessment at Washington State University Van- couver, where she teaches undergraduate courses in first-year composition and professional and technical writing, as well as graduate courses in writing studies theory and pedagogy. Page 26.924.1
; 1) development oflanguage and cultural skills, 2) teamwork and group dynamics, 3) knowledge of internationalbusiness and engineering cultures, and 4) knowledge of variations in international engineeringeducation and practice2. Based upon this structure, several engineering programs haveresponded using various methods to address these global competencies. Georgia TechnologicalUniversity, for example, offers a Global Studies Certificate that focuses on international relationsand the global economy through language training in addition to a capstone course and 26 weeks Page 26.930.3of study abroad. Other universities, such as Florida State
students in an inter-departmental capstone course on rapidprototyping of computer systems. An important aspect of the class is that all of the students workon a single large design project. At the beginning of the semester, students are given thespecifications for the desired outcome of the system, at which point the students assignthemselves to functional teams of four to six individuals. Each team is responsible for one aspectof the system (e.g., operating system, hardware/software integration). The class always delivers afunctional prototype to their client at the end of the semester. The course is structuredcollaboratively, allowing the students to learn with and from each other. The instructors take therole of advisors, keeping the students
-generation engineer students.Ms. Margo Cousins, University of Texas, Austin Ms. Cousins oversees undergraduate and graduate academic advising at the Department Biomedical Engi- neering at The University of Texas at Austin. She directs the office in strategic academic and professional development advising, capstone projects program, industry partnerships, first-year interest groups, and other special programs.Dr. Cindy D. Wilson, University of Texas, Austin Cindy Wilson is the Director of Academic Projects at the Cockrell School of Engineering at the University of Texas at Austin. She has worked at UT Austin since 2000. She holds a PhD in Higher Education Administration from UT Austin and an MA Degree from Teachers
– innovative design and entrepreneurship, engineering modeling, and global competency in engineering. She is currently associate editor for the AEE Journal.Dr. Nathalie Duval-Couetil, Purdue University, West Lafayette Nathalie Duval-Couetil is the Director of the Certificate in Entrepreneurship and Innovation Program, Associate Director of the Burton D. Morgan Center, and an Associate Professor in the Department of Technology Leadership and Innovation at Purdue University. She is responsible for the launch and devel- opment of the university’s multidisciplinary undergraduate entrepreneurship program, which has involved over 5000 students from all majors since 2005. She has established entrepreneurship capstone, global en
Paper ID #12879Exploring the Impact of Cognitive Preferences on Student Receptivity to De-sign ThinkingMs. Jessica Menold Menold, Pennsylvania State University, University Park Jessica Menold is a second year graduate student interested in entrepreneurship, the design process, and innovativeness of engineering graduates and professionals. She is currently working as a student mentor in the Lion Launch Pad program, where she works to support student entrepreneurs. Jessica is currently conducting her graduate research with Dr. Kathryn Jablokow on a project devoted to the development of a psychometric instrument that will
Instructional Support in the Leonhard Center for the Enhancement of Engineering Education at Penn State. She holds a doctoral degree in educational psychology emphasizing applied measurement and testing. In her position, Sarah is responsible for developing instructional support programs for faculty, providing evaluation support for educational proposals and projects, and working with faculty to publish educational research. Her research interests primarily involve creativity, innovation, and entrepreneurship education.Irene B. Mena, University of Illinois, Urbana-Champaign Irene B. Mena has a B.S. and M.S. in industrial engineering, and a Ph.D. in engineering education. Her research interests include first-year engineering
Paper ID #11317Finite Element Analysis Active Learning Modules Embedded Throughout ACurriculum: Implementation and Assessment of Results Based on StudentGPAProf. Kyle A. Watson, University of the Pacific Kyle Watson earned his B.S. in mechanical engineering from Villanova University and his M.S. and Ph.D. in mechanical engineering from North Carolina State University. He has been a faculty member at the University of the Pacific since 2003 and has taught undergraduate courses in thermodynamics, heat transfer, combustion, air-conditioning, dynamics, and senior capstone design.Dr. Ashland O. Brown, University of the Pacific
Page 26.238.2for water demand worldwide present challenges to scientists and engineers to attain sustainablemanagement of water resources. A recent United Nations report projects that virtually everynation will face a water supply problem within the next 8 years; currently more than a billionpeople have little access to clean drinking water, and 2 billion live in conditions of waterscarcity2. To address these critical issues, the NAE’s “The Engineer of 2020” highlights the needfor implementing ecologically sustainable practices to preserve the environment for futuregenerations. Further, the report emphasizes that water supplies will affect the future of theworld’s economy and stability3. As a result, the NAE warns that unless better ways to
senior capstone course. Page 26.222.1 c American Society for Engineering Education, 2015 Application of Life Cycle Analysis to Systems in an Introductory Materials CourseAbstract:Application of materials Life Cycle Analyses (LCA) to structures and systems addresses bothcourse outcomes, such as ABET 9a, 3i, 3j, and our program objectives. This effort is directed atimproving pedagogy in an introductory materials course to meet the above goals, and 3j (societaland global issues) specifically.The field of LCA is quite mature and has typically been presented in
between delivery methods, defined as the waythe training is incorporated into the curriculum, and instructional strategy, defined as the waythat instruction is delivered in a specific course. They found three primary delivery methods:embedded approach (also known as across the curriculum), joint model or team teachingapproach, and a standalone course.13 Colby and Sullivan found similar delivery methodsdescribed as standalone ethics classes, brief discussions in multiple classes, and modules inintroductory and/or capstone courses. Colby and Sullivan reviewed 100 ABET self-studies andvisited 7 programs. They found that a carefully thought-out strategy for ethical instruction forengineering students was rare. Rather, “overall, a picture emerged of
skills intoengineering curricula. As a result, engineering education is starting to change.One major area of change in engineering education is in design. Although design is widely considered asthe most distinguishing and fundamental activity of engineering [1], most curricula have it either isolatedin the senior year or sometimes also in the first year. Now, as the engineering curriculum has progressed,first year design courses, known as the cornerstone engineering courses, and fourth year design courses,referred to as capstone courses, have seen increased development as well [1]. However, these capstonecourses serve as the only standard opportunity across engineering education for undergraduateengineering students to showcase their engineering
Program to Integrate Technical Communication Habits (PITCH) initiative.Mr. Brian Harding, Mary Kay O’Connor Process Safety Center Texas A&M University Brian Harding is a PhD candidate at Texas A&M University. His advisor is Dr. M. Sam Mannan in the Mary Kay O’Connor Process Safety Center. His main research topic is the use of Decontamination Foam for Chemical Spill Containment. He has also worked on a variety of different safety related projects such as the investigation team for the ammonium nitrate explosion in West Texas and the use of RFID for corrosion detection in pipelines.Mr. Peter C Montagna, University of New Haven Peter Montagna is head of the Henkel Corporation Adhesives Division Audits &