P-12 Engineering Research and Learning (INSPIRE). Her P-12 research interests center on the integration of engineering into elementary education.Brenda Capobianco, Purdue University Dr. Brenda Capobianco is an Associate Professor in the Department of Curriculum and Instruction and holds a courtesy appointment in the School of Engineering Education and an affiliated appointment in Women’s Studies at Purdue University. She holds a B.S. in biology from the University of Alaska Fair- banks, M.S in science education from Connecticut Central State University, and Ed.D. from the University of Massachusetts Amherst. Her research interests include girls’ participation in science and engineering; teacher’s engagement in
Paper ID #6448Pre-Service Teachers’ Engineering Design Practices in an Integrated Engi-neering and Literacy ExperienceDr. Kristen Bethke Wendell, University of Massachusetts Boston Dr. Wendell is an assistant professor in the Department of Curriculum and Instruction Center of Science and Mathematics in Context. Page 23.973.1 c American Society for Engineering Education, 2013 Pre-Service Teachers’ Engineering Design Practices in an Integrated Engineering and Literacy
stateshave encouraged the integration of science and technology literacy standards[2], the integrationof such standards into the classroom environment is challenging for an instructor and requires alarge amount of time. And so while the state curricula throughout the country contain variousstandards for technological literacy, there exists a fundamental disconnect between the existingclassroom curricula, teacher training in engineering and technology, and the available time andresources to form an effective integration.One method for aiding teachers in enhancing curriculum-integrated activities is to go throughexternally funded programs such as the NSF RET and NSF GK12 programs. This work wascarried out through funding provided by the NSF GK12
Paper ID #12592Incorporating Engineering in the Biology Classroom (Curriculum Exchange)Wendy A Niesl, University of Minnesota STEM Education CenterDr. Siddika Selcen Guzey, Purdue University, West Lafayette Dr. Guzey is an assistant professor of biology and biology education at Purdue University. Her research and teaching focus on integrated STEM Education.Dr. Tamara J Moore, Purdue University, West Lafayette Tamara J. Moore, Ph.D., is an Associate Professor in the School of Engineering Education and Director of STEM Integration in the INSPIRE Institute at Purdue University. Dr. Moore’s research is centered on the integration
Teaching About Electricity Gabriella J. Ducamp and Crystal J. DeJaegher University of Virginia Page 23.731.2INCORPORATING ENGINEERING IN MIDDLE SCHOOL SCIENCE 2 AbstractThe overarching goals of this study are to introduce engineering concepts to middle schoolstudents through digital fabrication, and increase science competency while stimulating interestin STEM careers. This pilot study incorporates digital fabrication, engineering design, andvisualizations into a comprehensive unit that integrates hardware
Paper ID #11248Production and Characterization of Graphene and Other 2-dimensional Nano-materials: An AP High School Inquiry Lab (Curriculum Exchange)Mrs. Alison Lynn Fielding, Centennial High School, Boise, ID Mrs. Alison Fielding teaches Advanced Placement Chemistry and College Preparatory Chemistry at Centennial High School in Boise, ID. She earned her BS in Earth Science Education from Boise State University in 2013 with a minors in Chemistry. She is currently pursuing a Masters of Science degree in STEM from Boise State University. In an effort to explore new pedagogical approaches she worked with Boise State
Paper ID #10284Using Curriculum-Integrated Engineering Modules to Improve Understand-ing of Math and Science Content and STEM Attitudes in Middle Grade Stu-dentsJessica M Harlan, University of South Alabama Jessica M. Harlan is a PhD student in Instructional Design and Development at the University of South Alabama (USA). She is currently working with the USA evaluation team for the Engaging Youth through Engineering middle school engineering module program. Prior to her work at USA, Jessica was a train- ing officer for the Office of Research at the University of California, Davis. She continues to work as an instructional
AC 2012-4549: EARLY ENGINEERING THROUGH SERVICE-LEARNING:ADAPTING A UNIVERSITY MODEL TO HIGH SCHOOLDr. William C. Oakes, Purdue University, West Lafayette William Oakes is the Director of the EPICS Program at Purdue University, one of the founding faculty members of the School of Engineering Education, and a courtesy faculty member in mechanical engi- neering and curriculum and instruction in the College of Education. He is an Fellow of the ASEE and NSPE. He was the first engineer to win the Campus Compact Thomas Ehrlich Faculty Award for Service- learning. He was a co-recipient of the 2005 National Academy of Engineering’s Bernard Gordon Prize for Innovation in Engineering and Technology Education for his work in
-world applications (e.g., pharmaceutical engineering) into their high schoolscience curricula 18. As part of the program teachers developed instructional modules they coulduse to integrate engineering principles into their classroom teaching. The current paper describesan expansion of the project which focuses on helping the teachers refine their instructionalplanning skills while providing them with an effective protocol for developing standards-basedlesson plans.A process was introduced that allowed the development of curriculum modules based on eachteacher’s research. They start with a statement of their research practice and identify areas in thehigh school curricula into which the research best fits, then select specific activities to
. Educators increasingly recognize the challenge of finding quality curricularmaterials for integrated STEM education. In this study, forty-eight teachers participated in ayear-long professional development program on STEM integration funded by National ScienceFoundation (NSF). Teachers designed twenty STEM curriculum units as a part of the project.Each STEM curriculum unit includes an engineering challenge in which students use or developtechnologies to solve the challenge and integrates grade level appropriate mathematics (dataanalysis and measurement) and one of the three science content areas: life science, physicalscience, or earth science. The study aims to evaluate the STEM curriculum units developed bythe project teachers. We also
.Carolyn Parker, George Washington University Carolyn Parker is an Assistant Professor and lead faculty member to the Secondary Education Program in the Graduate School of Education and Human Development at the George Washington University. She holds a BS in Biology, MA in Teaching and PhD in Curriculum Instruction and Science Education. Dr. Parker’s research interests are in the achievement of women and underrepresented groups in science/technology.John Raczek, University of Maryland John W. Raczek is a Web Developer in the Office of Medical Education at the University of Maryland School of Medicine. His work focuses on developing software systems for education with an emphasis on
Paper ID #13652Designing a Toy Box Organizer: A PictureSTEM Curriculum Module (Cur-riculum Exchange)Kristina Maruyama Tank, Iowa State University Kristina M. Tank is an Assistant Professor of Science Education in the School of Education at Iowa State University. She currently teaches undergraduate courses in science education for elementary education majors. As a former elementary teacher, her research and teaching interests are centered around improv- ing elementary students’ science and engineering learning and increasing teachers’ use of effective STEM instruction in the elementary grades. With the increased emphasis on
could later be used in their K-12 classrooms. Theassociated pedagogy of open-ended design challenges in meaningful context and the iterativeengineering design cycle are also part of the curriculum. Hands-on engineering design activities are tobe integrated into four of the six existing science courses for Liberal Studies majors. The initialengineering experience is presented in the physical science course focused on forces, motion, andenergy. The emphasis of this initial activity is an introduction to the engineering design processthrough an in-class parachute activity titled “Medical Mission Drop,” adapted from an Engineering isElementary (EIE) module.Intro to Engineering Pre-activity: On a large Post-it® sheet, teams create and draw a "user
Paper ID #9710Nature-Inspired Design: A PictureSTEM Project Curriculum Module (Cur-riculum Exchange)Dr. Tamara J Moore, Purdue University Tamara J. Moore, Ph.D. is an Associate Professor of Engineering Education at Purdue University. Dr. Moore’s research is centered on the integration of STEM concepts in K-12 and higher education mathe- matics, science, and engineering classrooms in order to help students make connections among the STEM disciplines and achieve deep understanding. Her research agenda focuses on defining STEM integration and investigating its power for student learning. She is creating and testing
mathematics behind the shape, materialsand structure of the shelter, and then using an engineering design activity, students designed andtested improved shelters for their selected native culture. Students then communicated their findingsthrough writing and drawing. The Frame Routine guided teachers into finding curriculum learningobjectives and knitting them together to create an engineering activity that allowed for integrativelearning for students. In addition to the Frame Routine that guides the teacher, there is anEngineering Design Frame that supports teachers in creating the engineering design activity inaccordance with accepted engineering design principles. Teachers reported using these frames helpedthem create integrated units that
-12 Engineering Research and Learning (INSPIRE) and a member of the educational team for the Network for Computational Nanotechnology (NCN). Page 24.270.1 c American Society for Engineering Education, 2014 Changes in Elementary Students’ Engineering Knowledge Over Two Years of Integrated Science Instruction (Research to Practice) Strand: Engineering across the K-12 curriculum: Integration with the Arts, Social Studies, Science, and the Common CoreIntroductionIn part due to an increased global demand for engineers
researchers drawn from around the world, and which have had a substantial impact on the direction of air quality policies in Texas. He has developed environmental educational materials for engineering curricula and for the University’s core curriculum, as well as engineering education materials for high school students. The quality of his work has been recognized by the National Science Foundation (through the Presidential Young Investiga- tor Award), the AT&T Foundation (through an Industrial Ecology Fellowship), the American Institute of Chemical Engineers (through the Cecil Award for contributions to environmental engineering and through the Research Excellence Award of the Sustainable Engineering Forum), the
University of Alabama, Huntsville. Virani’s research interests include engineering education, empirical software quality, and cognitive perspectives of systems engineering teams. She teaches decision and risk analysis, software systems architecture, and systems integration, verification, and validation. She is a member of ASEE (American Society of Engineering Education) and IIE (Institute of Industrial Engineers).Ms. Iris B. Burnham, Da Vinci School for Science and the Arts Iris B. Burnham is the Founder and Superintendent of the Burnham Wood Charter School District in El Paso, Texas. The Da Vinci School serves grades 5-12 and has been designated an Innovative STEM Academy by the Texas Education Agency. Burnham ’s career
advanced statistical analysis. Her research seeks to integrate and refine theories through the use of multiple types of measurement including explicit, implicit, objective, and be- havioral. Her research program has been funded by the National Science Foundation, National Institutes of Health, Army Research Institute, Psi Chi, the Society for the Psychological Study of Social Issues, and the Haynes Foundation.Dr. Mariappan Jawaharlal, California State Polytechnic University, Pomona Mariappan Jawaharlal is recognized as an outstanding educator for his innovative and engaging teaching pedagogy. He has received numerous awards and grants including the Northrop Grumman Award for Ex- cellence in teaching. Jawaharlal is the
existing language arts curriculum where teachers choose books that work best in their classrooms. • It is an exciting and different way to practice literacy and students who struggle with language arts have a new way to demonstrate comprehension. • It enhances the comprehension of text as students try to find details to predict characters’ choices. Students relate to the characters as they work to create solutions for them. • It introduces students to rich, realistic engineering problems. • It provides synergistic integration of different disciplines. st • It emphasizes problem-solving, teamwork skills and
learning through experimentationenabled the course material to be better understood, and also better appreciated. We believe thatfeedback about our course will help to continue to refine our pedagogical strategy, and willenhance the way in which challenging and advanced science can be taught to young persons.With the emergence of fields that integrate engineering with other disciplines, it is becomingincreasingly important for the engineering education community to develop multidisciplinarycourses. The curriculum we presented provides an example of the role of
Paper ID #8052Designing STEM Curriculum for K12 StudentsDr. MD B. Sarder, University of Southern Mississippi Dr. Sarder is an associate professor and program coordinator of the industrial engineering technology program at the University of Southern Mississippi (USM). He is also an assistant director of the center for logistics, trade and transportation. At the USM, he revamped his program by developing as many as fourteen new courses, implementing hands on experience in courses, and delivering online courses for distant students. Dr. Sarder is very active in engineering and technology education research. He has
currently does research at the Dynamical Systems Laboratory of NYU-Poly in the area of robotic fish controlled by iPhone/iPad devices.Dr. Vikram Kapila, Polytechnic Institute of New York University Vikram Kapila is a Professor of Mechanical Engineering at NYU-Poly, where he directs an NSF funded Web-Enabled Mechatronics and Process Control Remote Laboratory, an NSF funded Research Experience for Teachers Site in Mechatronics, and an NSF funded GK-12 Fellows project. He has held visiting posi- tions with the Air Force Research Laboratories in Dayton, OH. His research interests are in K-12 STEM education, mechatronics, robotics, and linear/nonlinear control for diverse engineering applications. Un- der Research Experience
our students to be ethical practicing engineers, and is the chair of the External Advisory Committee for the IDEA cen- ter, which promotes inclusion, diversity, excellence and advancement in engineering. She has conducted research in performance-based earthquake engineering and large-scale experimentation of reinforced con- crete, FRP composite, and hybrid bridges. Page 23.358.1 c American Society for Engineering Education, 2013 Curriculum Exchange: “Make Your Own Earthquake”IntroductionThe George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) is an
or non-existent.This paper presents 1) how a basic introduction to engineering course designedfor general education and potential engineering majors was deliberately improvedusing the Parallel Curriculum Model (PCM) to align with eight ABET ProgramOutcomes found in Criterion 3; 2) how PCM was also used to carefully structurethe curriculum to meet the needs of multiple learners (general education students,pre-engineering students, elementary education students); 3) how we structuredthe learning activities and assignments to assess student competence, confidenceand comfort (“the 3C’s”) with engineering, and 4) how the team teaching modelthat includes an engineering and education faculty member provides enhancedopportunities to use innovative
thestudents. Page 23.1030.5The guidelines for the challenges are released 4-6 weeks prior to each competition to allowteams time to prepare. Teachers can integrate these project-driven challenges into theirclassroom curriculum, or they can use the challenges as curriculum for their afterschool clubsand programs. The majority (62%) of students on competition teams are members of roboticsclubs that meet after school. Twenty-one percent of the remaining students volunteer or competeto participate on a team while 13% are required to participate in the competitions as part of aSTEM class. A small percentage of students participate in the competitions as
.[9] Kimmel, H., Rockland, R., Hirsch, L., Carpinelli, J, and Burr-Alexander, L. (2011). Medibotics: An EngineeringProgram for Integration into High School Curriculum. Proceedings of the 2011 International Conference onEngineering Education, Ulster, Northern Ireland, August.[10] Hirsch, L.S., Carpinelli, J., Kimmel, H., Rockland, R., and Burr-Alexander, L. (2009). The impact ofintroducing robotics in middle and high school science and mathematics classrooms, Proceedings of the 2009 ASEEAnnual Conference, Austin, TX, June.[11] Kimmel, H., Carpinelli, J., Burr-Alexander, l., Hirsch, L.S., and Rockland, R. (2008). .IntroducingRobotics into the Secondary Science Classrooms Proceedings of the 19th International SITE Conference,pp. 4189-4194, Las
attended a professional developmentworkshop. Assessment rubrics are integrated into the learning module in order to evaluate theeffectiveness of the materials. Prior to using the curriculum, students take an online Interest andAttitude Questionnaire and Pre-Assessment to establish baseline attitudes and knowledge. Inaddition, a short (45 minute) team design challenge is used to evaluate the extent to whichstudent teams are using the engineering design process prior to exposure to the curriculum.Upon completion of these activities, the students begin the unit. Students are introduced to a dialysis patient and her doctor through a professionallyproduced video segment. The purpose of this segment is to provide societal context for
26.1050.3subject-area curricula 26; teachers need pedagogical models and experience with integratingengineering into their curricula 27, and research strongly supports CDB professional developmentas an effective model to improve teacher content knowledge and practice26.C. Purpose of StudyThe purpose of this study was to determine the effectiveness of a CDB professional developmentprogram in improving K-12 teachers’ understanding of engineering subject-matter, self-efficacyin engineering curriculum design, and proficiency with integrating engineering design strategiesin project-based engineering units. We asked the following research questions: (1) What effectdid a CDB professional development have on teachers engineering subject-matter knowledge?(2) What
AC 2009-1747: THE EFFECT OF A TEACHER PROFESSIONAL DEVELOPMENTINTEGRATED CURRICULUM WORKSHOP ON PERCEPTIONS OF DESIGN,ENGINEERING, AND TECHNOLOGY EXPERIENCESKaren High, Oklahoma State University KAREN HIGH earned her B.S. from the University of Michigan in 1985 and her M.S. in 1988 and Ph.D. in 1991 from the Pennsylvania State University. Dr. High is an Associate Professor in the School of Chemical Engineering at Oklahoma State University where she has been since 1991. Her main technical research interests are Sustainable Process Design, Industrial Catalysis, and Multicriteria Decision Making. Her engineering education activities include enhancing mathematics, communication skills, critical