Asee peer logo
Displaying results 121 - 150 of 637 in total
Conference Session
Computer Science-related Programs
Collection
2012 ASEE Annual Conference & Exposition
Authors
Heath Tims, Louisiana Tech University; Galen E. Turner III, Louisiana Tech University; G.B. Cazes, Cyber Innovation Center; JoAnn M. Marshall, Cyber Innovation Center
Tagged Divisions
K-12 & Pre-College Engineering
development company.Ms. JoAnn M. Marshall, Cyber Innovation Center Page 25.867.1 c American Society for Engineering Education, 2012 Junior Cyber Discovery: Creating a Vertically Integrated Middle School Cyber CampAbstractThis paper describes an innovative partnership that was developed between high schools andtheir feeder middle schools in an effort to foster collaboration and mentoring among facultywhile immersing rising 7th grade students in a week-long, project-driven day camp to developinterest and skills in the fields of science, technology, engineering, and math (STEM). Themiddle school teachers received
Conference Session
Outreach Along the K-12 Pathways to Engineering
Collection
2013 ASEE Annual Conference & Exposition
Authors
Susan A. Pruet, Mobile Area Education Foundation; James Van Haneghan, University of South Alabama; Melissa Divonne Dean, Engaging Youth through Engineering
Tagged Divisions
K-12 & Pre-College Engineering
relevance to students provides the unifying theme and “hook” for each module, highlighting the “why Page 23.1342.4 bother” of learning mathematics and science.12 & 13 Modules systematically develop team work/communication skills.14& 15 The engineering design challenges involve technology, equipment and materials in the applications of mathematics and science content, promoting an integrated STEM curriculum.16Doug Clements’ Curriculum Research Framework 17 has guided the research and developmentcycle of the EYE Modules. Consistent with that framework, there have been multiple phases offormative development and
Conference Session
Ensuring Access to K - 12 Engineering Programs
Collection
2006 Annual Conference & Exposition
Authors
Benita Comeau, Georgia Institute of Technology; Marion Usselman, Georgia Institute of Technology; Donna Llewellyn, Georgia Institute of Technology; Michael Pastirik
Tagged Divisions
K-12 & Pre-College Engineering
2006-1436: THE CONSEQUENCES OF CANCELING PHYSICS: AN INITIALSTUDY IN AN AT RISK URBAN HIGH SCHOOLBenita Comeau, Georgia Institute of Technology Benita M. Comeau is a Ph.D. candidate in the school of Chemical & Biomolecular Engineering at the Georgia Institute of Technology. Benita received her B.S.E. in Chemical Engineering from the University of Michigan, Ann Arbor. Benita is a STEP Fellow in the Georgia Tech NSF GK-12 program.Marion Usselman, Georgia Institute of Technology Dr. Marion C. Usselman is a Senior Research Scientist at the Center for Education Integrating Science, Mathematics and Computing (CEISMC) at the Georgia Institute of Technology. Marion received her Ph.D. in
Conference Session
Topics in K-12 Engineering
Collection
2008 Annual Conference & Exposition
Authors
Matthew Miller, Society of Automotive Engineers International; Elizabeth Bachrach, Goodman Research Group, Inc.
Tagged Divisions
K-12 & Pre-College Engineering
classroom curriculum materials and local news products. Dr. Bachrach earned a doctorate in Developmental Psychology from Brandeis University, where she studied the development of children’s cognitive abilities with a focus on their attention to and comprehension of media. She earned an A.B. in Psychology at the University of Michigan. Page 13.814.1© American Society for Engineering Education, 2008Involvement of STEM Professionals in the Classroom Enhances Effectiveness of SAE International’s A World In Motion® ProgramIntroductionEach year, fewer young people are choosing to direct their curiosity and
Conference Session
K-12 & Pre- College Engineering Division Poster Session
Collection
2015 ASEE Annual Conference & Exposition
Authors
Lauren Redfern, Duke University; A. Leyf Peirce Starling, North Carolina State University; Claudia K Gunsch, Duke University
Tagged Divisions
K-12 & Pre-College Engineering
-Charlotte in 2010. She has teaching experience in both the formal educational settings as well as informal settings. She has taught 6th, 7th and 8th grade math, science, social studies and reading comprehension and high school physics and aerospace engineering in North Carolina public and private schools. During the sum- mers of 2013 and 2014, Leyf served as the Academic Director for the Middle School Summer Math Camp and Middle School and High School Biosciences and Engineering Camps at Duke University. Leyf has extensive experience in curriculum development as an editor for teachengineering.org and a lead developer for four Race to the Top courses on aerospace, automation and security. She has also served as a
Conference Session
Research to Practice: STRAND 2- Engineering Across the Curriculum: Integration with the Arts, Social Studies, Science, and the Common Core
Collection
2015 ASEE Annual Conference & Exposition
Authors
Glenn W Ellis, Smith College; Al Rudnitsky, Smith College; Beth McGinnis-Cavanaugh, Springfield Technical Community College; Isabel Huff, Springfield Technical Community College; Sonia K Ellis, Smith College
Tagged Topics
Diversity
Tagged Divisions
K-12 & Pre-College Engineering
adventure; and pathways for integrating the online and offline curricula. Figure 1: The Through My Window homepage (left) shows options for reading the Talk to Me novel, engaging in learning adventures and other options. The Team Through My Window homepage (right) shows options for learning about the project and accessing educator resources.III. Imaginative Education Engaging the imagination is not a sugar-coated adjunct to learning; it is the very heart of learning. It is what brings meaning and sense and context and understanding to the knowledge we wish to teach. --Kieran Egan, An Imaginative Approach to Teaching4The learning sciences place great emphasis on developing
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Tirupalavanam G. Ganesh, Arizona State University; Lisa Stapley Randall, Arizona State University; Johnny Thieken, Arizona State University
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-1905: DESIGNING AND TESTING WATER FILTRATION DE-VICES USING THE ENGINEERING DESIGN PROCESS: A DESCRIP-TION OF AN EIGHTH GRADE CURRICULAR UNIT ON BIOREMEDI-ATIONTirupalavanam G. Ganesh, Arizona State University Tirupalavanam G. Ganesh is Assistant Professor of Engineering Education at Arizona State University’s Ira A. Fulton Schools of Engineering. He has bachelors and masters degrees in Computer Science and Engineering and a PhD in Curriculum and Instruction. His research interests include educational research methods, communication of research, and k-16+ engineering education. Ganesh’s research is largely focused on studying k-12 curricula, and teaching-learning processes in both the formal and informal
Conference Session
Research to Practice: STRAND 2- Engineering Across the Curriculum: Integration with the Arts, Social Studies, Science, and the Common Core
Collection
2015 ASEE Annual Conference & Exposition
Authors
Julie Steimle, University of Cincinnati; David Linley Macmorine, CEEMS
Tagged Divisions
K-12 & Pre-College Engineering
to help me create and teach instructional unitsconnecting math concepts to engineering design. The Summer Institute was part of theCincinnati Engineering Enhanced Math and Science Program (CEEMS), which is a Math andScience Partnership grant funded by the National Science Foundation, DUE-1102990. In oneinstructional unit taught to approximately 30 students in my honors pre-calculus class, I mademathematical concepts more relevant to students’ everyday lives by presenting them with theconnections between math, music, engineering, and science. The study of sound through musicis an excellent way to introduce the mathematics of waves. When presented with trigonometry,students are often confused and sometimes turned off by the subject. My
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Van Stephen Blackwood, Colorado School Of Mines, GK-12 NSF Fellow; Barbara M. Moskal, Colorado School of Mines
Tagged Divisions
K-12 & Pre-College Engineering
AC 2011-1294: CURRICULAR EXCHANGE BETWEEN A STEM UNI-VERSITY AND A RURAL ELEMENTARY SCHOOL: THE ESTABLISH-MENT OF AN INTERACTIVE VIDEO LINKVan Stephen Blackwood, GK-12 Colorado School Of Mines GK-12 NSF Fellow I am a mechanical engineering graduate student at Colorado School of Mines. I am funded by National Science Foundation GK-12 teaching fellowship. I research chemically reacting flow with respect to hy- drogen/nitrous oxide combustion chemistry.Barbara M. Moskal, Colorado School of Mines Barbara Moskal received her Ed.D. in Mathematics Education from the University of Pittsburgh. She is a Professor of Mathematical and Computer Sciences, the Interim Director of the Trefny Institute for Educational Innovation
Conference Session
Curriculum Exchange II
Collection
2012 ASEE Annual Conference & Exposition
Authors
Crystal Jean DeJaegher, University of Virginia; Jennifer L. Chiu, University of Virginia; M. David Burghardt, Hofstra University; Deborah Hecht, City University of New York; Peter Thomas Malcolm, University of Virginia, Charlottesville; Edward Pan, University of Virginia
Tagged Divisions
K-12 & Pre-College Engineering
concepts that underpin thedesign challenge.The WISEngineering team has been engaged in preliminary work to study the feasibility of usinginformed engineering design to improve mathematics learning. A team of teachers, Page 25.881.4administrators, engineers, and educational researchers, have implemented an instructional unittermed the Skyline Design Challenge (Figure 1). The unit focused on the sixth- and seventh-grademathematics curriculum using informed engineering design and digital fabrication. The unit wasa paper- and-pencil prototype for the web-based WISEngineering project. The developmentprocess included math teachers to ensure the content
Conference Session
Curriculum Exchange II
Collection
2012 ASEE Annual Conference & Exposition
Authors
Dani Sledz, Colorado School of Mines; Allison M. Silvaggio, STEM Magnet Lab School
Tagged Divisions
K-12 & Pre-College Engineering
manipulatives and technology, and inthe integration of reading instruction in mathematics and science content delivery (see:http://mcs.mines.edu/Research/bechtel/new). This is being accomplished by offering cohorts of K-5teachers two, two-week summer workshops on a college campus, over successive summers, inmathematics and science with an energy and renewable energy emphasis. Each cohort consists of ateaching team representing all grade levels, K-5, within a given elementary school. These workshopsare taught by university professors and researchers from a national laboratory. Implementation of workshop activities in the elementary classroom during the academic year isnot left to chance; rather, graduate students directly assist the participating
Conference Session
Ensuring Access to K - 12 Engineering Programs
Collection
2006 Annual Conference & Exposition
Authors
Lawrence Genalo, Iowa State University; Jamie Gilchrist, Iowa State University
Tagged Divisions
K-12 & Pre-College Engineering
2006-1007: HOME SCHOOLERS IN AN ENGINEERING/EDUCATION K12OUTREACH PROGRAMLawrence Genalo, Iowa State University LAWRENCE J. GENALO is Professor and Assistant Chair of the Department of Materials Science and Engineering at Iowa State University. He received a Ph. D. in Applied Mathematics with Systems Engineering emphasis in 1977, served as Chair for Freshman Programs and DELOS Divisions, and runs the Toying With TechnologySM Program at Iowa State.Jamie Gilchrist, Iowa State University Jamie Gilchrist is a preservice teacher in the Department of Curriculum and Instruction's elementary education program. She is an undergraduate teaching and laboratory assistant for the Toying With
Conference Session
Curriculum Exchange II
Collection
2012 ASEE Annual Conference & Exposition
Authors
Sharie Kranz, Coronado High School; Catherine Tabor, El Paso ISD; Art Duval, University of Texas, El Paso; Kien H. Lim, University of Texas, El Paso; Amy Elizabeth Wagler, University of Texas, El Paso; Eric A. Freudenthal, University of Texas, El Paso
Tagged Divisions
K-12 & Pre-College Engineering
learn how the graphicallibrary was implemented, not just how to use it. This observation triggered a sequence ofi iMPaCT is an approximate acronym for Media Propelled Computational Thinking. The learning modules (LMs) Page 25.315.2developed for integration within high school math courses are collectively referred to as iMPaCT-Math (IM).refinements that eventually resulted in a new course that uses the programming of simplemathematical algorithms that render graphics and simulate kinematics. These tiny programsfocus student attention on exploring principles underlying (and building “gut level” intuitionsrelated to) the content of high
Conference Session
Extending a Hand Back: Older Students Inspiring Younger Students
Collection
2011 ASEE Annual Conference & Exposition
Authors
Sunni H. Newton, Georgia Institute of Technology; Tristan T. Utschig, Georgia Institute of Technology; Donna C. Llewellyn, Georgia Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
Lead the Way, apre-college engineering curriculum program, which has been adopted by over 10% of highschool and is used in all 50 states15. The goal of this program is to integrate STEM content intothe program of study for middle and high school students. Seven courses are offered through thisprogram at the high school level, some of which can be used to earn college credit. Teachers ofPLTW courses must go through professional development and training in project-based andproblem-based instruction. In a study comparing the beliefs of PLTW teachers with regular mathand science teachers, PLTW teachers were more likely to identify support for engineering intheir schools, were less likely to believe that a successful engineer must be a high
Conference Session
Thinking Outside the Box! Innovative Curriculum Exchange for K12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Zachary Vonder Haar, University of Maryland, Baltimore County; Taryn Melkus Bayles, University of Maryland, Baltimore County; Julia M. Ross, University of Maryland, Baltimore County
Tagged Divisions
K-12 & Pre-College Engineering
., is a Professor of the Practice of Chemical Engineering in the Chemical and Bio- chemical Engineering Department at UMBC, where she incorporates her industrial experience by bringing practical examples and interactive learning to help students understand fundamental engineering princi- ples. Her current research focuses on engineering education, outreach and curriculum development.Dr. Julia M. Ross, University of Maryland, Baltimore County Page 22.594.1 c American Society for Engineering Education, 2011 Engineering in Healthcare: A Heart Lung SystemAbstract INSPIRES is an
Conference Session
CEIII Wrapup
Collection
2013 ASEE Annual Conference & Exposition
Authors
Kristina Maruyama Tank, University of Minnesota, Twin Cities; Tamara J Moore, University of Minnesota, Twin Cities; Christy Pettis, University of Minnesota
Tagged Divisions
K-12 & Pre-College Engineering
developed inorder to meet the need for an integrated approach by employing engineering and literary contextsto integrate science, technology, and mathematics instruction in meaningful and significant ways.Since this paper was written for the curriculum exchange, the focus will be on the detailedexplanation of each of the activities along with the process used to develop the curricular unitbefore a brief presentation of results based on the piloting of this curriculum in several primaryclassrooms.The theoretical framework guiding the development of the PictureSTEM modules was the STEMIntegration research paradigm4. Within this paradigm, STEM integration is defined by themerging of the disciplines of science, technology, engineering, and mathematics
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
Amy E. Landis, University of Pittsburgh; Christian D. Schunn, University of Pittsburgh; Monica Christine Rothermel, University of Pittsburgh; Scott Shrake, University of Pittsburgh; Briana Niblick, University of Pittsburgh
Tagged Divisions
K-12 & Pre-College Engineering
with reduced functional capabilities due toaging or disability. Research projects range from the design of sustainable and potable watertreatment technologies to the design of an anatomically correct hand.The RET at Pitt includes four major components: 1) curriculum development for Pittsburgh areahigh school teachers during an intensive summer experience, 2) teacher implementation of newengineering design units into their courses, 3) an annual design competition where the teachers’students present their projects, and 4) high school student internships in university research labs.A snapshot of the Pitt RET program’s longitudinal timeline is shown in Figure 1. The processbegins in February, when we start recruiting 8-9 new teachers into the
Conference Session
Standards Based Approaches to K -12 Engineering
Collection
2006 Annual Conference & Exposition
Authors
Kazem Kazerounian, University of Connecticut; David M. Moss, University of Connecticut; David Giblin, University of Connecticut; Elias Faraclas, University of Connecticut; Cathi Koehler, University of Connecticut
Tagged Divisions
K-12 & Pre-College Engineering
looking for merely anytime the word “food and medicine” was used but instead, we were investigating phrases thatinferred the use of food or medicine with the intent of introducing engineering concept such asgenetic engineering, DNA manipulation of food products, or understanding how CAT scanswork. The EEF codes outlined core engineering concepts that students must understand orperform to receive an integrated science/engineering education. While some of these codes aretaught in a science curriculum (e.g. power and energy are taught in physics), the understandingof these codes from an engineering perspective differs in how this understanding is applied toscience and current technology in our society. As we reviewed each state science framework
Conference Session
Research to Practice: STRAND 4 – K-12 Engineering Resources: Best Practices in Curriculum Design (Part 1)
Collection
2015 ASEE Annual Conference & Exposition
Authors
Marion Usselman, Georgia Institute of Technology; Mike Ryan, Georgia Institute of Technology; Jeffrey H Rosen, Georgia Institute of Technology; Jayma Koval, Georgia Institute of Technology; Sabrina Grossman, CEISMC: Georgia Tech; Nancy Anna Newsome, CEISMC - Georgia Tech; Marcela Nicole Moreno, CEISMC
Tagged Divisions
K-12 & Pre-College Engineering
projects. Page 26.1349.2 c American Society for Engineering Education, 2015 Robotics in the Core Science Classroom: Benefits and Challenges for Curriculum Development and Implementation (RTP, Strand 4)AbstractThe Science Learning Integrating Design, Engineering and Robotics (SLIDER) project at theGeorgia Institute of Technology is in the 5th year of developing and implementing an inquiry andproject-based learning curriculum that is aligned with the Next Generation Science Standards(NGSS) and designed to teach middle school physical science disciplinary
Conference Session
Broadening Participation of Minority Students in and with K-12 Engineering
Collection
2011 ASEE Annual Conference & Exposition
Authors
Zhao Chad Kong; Angie Martiza Bautista-Chavez, Rice University; Andres J Goza, Rice University; Rachel Jackson, Rice University; Kurt Kienast, Rice University; Sam Oke; Juan A Castilleja, The Boeing Company; Brent C Houchens, Rice University
Tagged Divisions
K-12 & Pre-College Engineering, Minorities in Engineering
22.814.3on anecdotal evidence from teacher feedback to improve students’ understanding of fundamentalengineering concepts8,9,10. The Integrated Teaching and Learning (ITL) Program at theUniversity of Colorado at Boulder developed a Creative Engineering course for students at anearby high school. This course focused on hands-on design based engineering in conjunctionwith the high school curriculum and demonstrated that students had increased confidence in theuse of engineering methods to solve problems11.Research on learning styles reflects the positive impact of integrating kinesthetic learningenvironments with traditional learning structures. A recent study showed that learning is aconglomeration of a variety of interactions12. The results
Conference Session
Integrating Technical Research into Professional Development and K-12 Classrooms
Collection
2011 ASEE Annual Conference & Exposition
Authors
Muhittin Yilmaz, Texas A&M University, Kingsville; Carlos A. Garcia, Texas A&M University, Kingsville; Tamara D. Guillen, Texas A&M University, Kingsville; David Ramirez, Texas A&M University, Kingsville
Tagged Divisions
K-12 & Pre-College Engineering
infusion to high schools was to adopt the university-developed research course template for high school research activities14. A summer researchexperience camp involved junior and senior high school students for only science disciplines butoffered a chance to earn one semester hour of college credit and reported to establish a studentpipeline for many undergraduate programs nationwide15. Another activity offered a six-weekresidential summer research camp only for sophomores and juniors in high schools, focused onbiological, agricultural, environmental, and natural sciences and required a fee and anexpectation of a scientific report16. Also, a no-fee summer camp offered a variety of engineeringresearch topics in an eight-week session but the camp
Conference Session
Research and Models for Professional Development
Collection
2011 ASEE Annual Conference & Exposition
Authors
Cher C. Hendricks, Georgia Institute of Technology; Barbara Burks Fasse, Georgia Institute of Technology; Donna C. Llewellyn, Georgia Institute of Technology
Tagged Divisions
K-12 & Pre-College Engineering
onthe types of support and professional development needed to adequately prepare teachers todeliver the new curriculum. The SLIDER Fellows are an integral part of this professionaldevelopment, spending one day each week in a classroom with the SLIDER teacher, and so it isessential to determine the Fellows’ impact on curriculum implementation and teacherdevelopment. Our purpose in studying factors such as power distribution, ways teachers andFellows interact, and interdependence is to discover ways to leverage positive aspects of theteacher-Fellow relationship and identify and improve any difficulties so Fellows will have thegreatest impact possible in the classroom, both in their interactions with students and withteachers.Fellows Programs
Conference Session
Engineering Student Involvement in K-12 Programs
Collection
2007 Annual Conference & Exposition
Authors
Cindy Mahler, The Boeing Company; Ann Broughton, Purdue University; Barrett Caldwell, Purdue University
Tagged Divisions
K-12 & Pre-College Engineering
AC 2007-2402: FALL SPACE DAY – AN EDUCATIONAL OUTREACH ANDPROFESSIONAL DEVELOPMENT PROGRAM MODELCindy Mahler, The Boeing Company CINDY MAHLER is an International Space Station systems integration engineer at the Boeing Company in Houston, Texas. She is the founder of Purdue Fall Space Day and has a vision for creating a National Organization to expand Fall Space Day not only geographically but also to use the model to reach out to students in other subject areas. While working at United Space Alliance in spaceflight training, Cindy was awarded a Silver Snoopy, the highest award given by Astronauts to less than 1% of the workforce, for the successful integration of the U.S. and Russian
Conference Session
Addressing the NGSS, Part 2 of 3: Supporting K-12 Science Teachers in Engineering Pedagogy and Engineering-Science Connections, Part 2 of 3
Collection
2014 ASEE Annual Conference & Exposition
Authors
Louis Nadelson, Boise State University; Anne Louise Seifert, Idaho National Laboratory; Meagan McKinney, Boise State University
Tagged Divisions
K-12 & Pre-College Engineering
STEM teaching and learning with local STEM related resources guided thedesign of our week-long integrated STEM K-12 teacher professional development (PD) program,i-STEM. We have completed four years of our i-STEM PD program and have made place-basedSTEM a major emphasis of our curriculum. This report focuses on the data collected in thefourth year of our program. Our week-long i-STEM PD served over 425 educators last summer(2013), providing them with in depth theme-based integrated STEM short courses which werelimited to an average of 15 participants and whole group plenary sessions focused around placed-based integrated STEM, inquiry, engineering design, standards and practices of Common Coreand 21st Century skills. This state wide PD was
Conference Session
Enhancing K12 Mathematics Education with Engineering
Collection
2008 Annual Conference & Exposition
Authors
Eli Silk, University of Pittsburgh; Christian Schunn, University of Pittsburgh
Tagged Divisions
K-12 & Pre-College Engineering
masteredthe majority of these constructs, rather than serving as an integrator of those concepts. In general,applied, rich problems, found in most engineering contexts, are likely to have a similarpropensity to involve a diverse set of mathematics.As a result of this study, we have a number of possible ideas that will help guide our futureresearch with this curriculum and with other engineering curricula intending to teachmathematics. For instance, it may be more appropriate to use the engineering design activity as acapstone activity after the prerequisite mathematics knowledge has already been learned in amore traditional way. The engineering activity might then serve to strengthen and reinforceunderstanding of the mathematics ideas rather than
Conference Session
K-12 and Pre-College Engineering Division Curriculum Exchange
Collection
2014 ASEE Annual Conference & Exposition
Authors
Patricia Carlson, Rose-Hulman Institute of Technology; Ryan Smith
Tagged Divisions
K-12 & Pre-College Engineering
Meet the Common Core Standards:Examples from a Workshop for Middle School STEMDr. Patricia A. Carlson, Professor and PRISM Director, Email: carlsonp@rose-hulman.edu Dr. Erin Phelps, Matt Davidson, Bob Jackson, and Ryan SmithWhat’s Available at the Station: This collaboration includes Vigo County School Corporation (Terre Haute, IN)and Rose-Hulman Institute of Technology’s PRISM Project (http://rose-prism.org). A package of materials provides(1) an overview for the integrated curriculum approach, (2) synopses of the three workshops given by engineeringprofessors, and (3) examples of lessons – based on engineering concepts – developed by 6th – 8th grade teachers.Visitors to the exhibit table will be greeted by members of the PRISM team, a
Conference Session
K-12 Teacher Professional Development
Collection
2012 ASEE Annual Conference & Exposition
Authors
Louis Nadelson, Boise State University; Anne Louise Seifert, Idaho National Laboratory; Jill K. Hettinger, Boise State University
Tagged Divisions
K-12 & Pre-College Engineering
aspectsof learning that could be readily attended to using engineering design and design challenges as acurricular and instructional context. Since engineering design is about solving problems, manyof which are problems with multiple possible solutions, is it ideal for promoting critical thinkingand problem solving skills17. Engineering design is best approached when used as amultidisciplinary perspective, as an opportunity for integrating STEM content, as a way ofincreasing chances for students to apply their knowledge, and as a method to enhance studentmotivation and engagement in learning14. Additionally, learning opportunities grounded inengineering design challenges capitalizes on opportunities for learners to explore avenues ofinterest
Conference Session
CEIII Wrapup
Collection
2013 ASEE Annual Conference & Exposition
Authors
Austin Bates Talley, University of Texas, Austin; Richard H. Crawford, University of Texas, Austin; Christina Kay White, University of Texas, Austin
Tagged Divisions
K-12 & Pre-College Engineering
traditionally underrepresented groups in engineering education. Page 23.360.1 c American Society for Engineering Education, 2013 Curriculum Exchange: Middle School Students Go Beyond Blackboards to Solve the Grand ChallengesAbstractOur program offers an integrated approach to engaging middle school students in activities thatimprove awareness and understanding of a range of STEM college and career pathways. Theprogram is framed within the Grand Challenges of the 21st Century identified by the NationalAcademy of Engineering (NAE). The focus of this paper is the curriculum used for
Conference Session
Engineering Professional Development for K-12 Teachers – I
Collection
2007 Annual Conference & Exposition
Authors
Daniel Sullivan, The College of New Jersey; Stephen O'Brien, The College of New Jersey; John Karsnitz, The College of New Jersey
Tagged Divisions
K-12 & Pre-College Engineering
pace of technological innovation, and thespecialized requirements of programs such as the Infinity Project and PLTW haverequired a change in the basic education of a technology education professional.In an effort to begin to address these challenges the Department of Technological Studiesof The College of New Jersey has begun to reshape both the make-up of its faculty andthe focus of its curriculum. During the past year, two senior members have retired and thedepartment has hired two new faculty to fill these openings. The retiring faculty bothheld doctorates in education with a focus on industrial arts – one of the new facultymembers has a doctorate in aerospace engineering and the other has a doctorate inelectrical engineering. These two new
Conference Session
Engineering Professional Development for K-12 Teachers – II
Collection
2007 Annual Conference & Exposition
Authors
Mark Tufenkjian, California State University-Los Angeles; Ethan Lipton, California State University-Los Angeles
Tagged Divisions
K-12 & Pre-College Engineering
engineering material into their teaching. Most indicated that they havechanged or plan to change their curriculum to incorporate the engineering concepts they learnedand the majority will use the engineering design challenge in their curriculum.Introduction and BackgroundAn increasing and significant number of business, academic, and political leaders, professionalassociations and coalitions continue to express their growing concern that our nation’s deficiencyin K-12 Science, Technology, Engineering, and Mathematics (STEM) Education is approachinga crisis level. Their numbers represent all areas of the engineering, technology, science,mathematics, business and political communities. A sampling presents an overview of currentsentiment.The American