British Columbia, where he serves as the program advisor for the Manufacturing Engineering undergraduate program. Casey’s research interests include multi-campus instruction and the development of open educational resources.Abbas Hosseini, University of British Columbia, Vancouver ©American Society for Engineering Education, 2024 Reflections on Multi-campus Teaching in a New Manufacturing Engineering ProgramAbstractIn 2019, the University of British Columbia (UBC) initiated a new multi-campus manufacturingengineering program involving two campuses situated over 450 km apart. Each institution isresponsible for managing its own curriculum and specialization within manufacturing
Photovoice reflections as well as written and oral presentations during andat the end of the term and are based on evaluating the level of practical knowledge gained by the studentsduring the development of such projects. As a general outcome, students became more involved duringclass time, and also they have shown interest in other research areas, being involved in extra courseresearch activities. Details related to the intervention and lessons learned will be provided so otherengineering instructors can easily re-create in the classroom. Overall, many different fields ofengineering instructors can benefit from this project-based approach to combine theory and practice toprepare the students to become better problem solvers and obtain practical
six individual skillmodules covering skills such as dependability, responsibility, independence, persistence,integrity, and ethics. The main goal is to create multiple opportunities to teach and reinforcesoft skills within the regular technical curriculum in the high schools. This paper discussesthe integration of the soft skills modules into the technical curriculum developed viaexamples, and outlines its potential uses in this engineering department’s curriculumincluding its manufacturing engineering program. The paper concludes with a discussion ofthe implementation of this project and provides some preliminary feedback from theparticipating high schools and reflections of the authors. It also includes future workopportunities such as
Society of Phi Kappa Phi, placing her among the top 10% of Purdue Graduate students. Her academic journey reflects a commitment to advancing knowledge and contributing to technological innovation in XR control systems. Her professional aspirations include applying for an Assistant Professor position upon completing her Ph.D. This career trajectory aligns with her desire to leverage her accumulated experience and knowledge to mentor and guide emerging talents. A central component of her vision is inspiring and supporting aspiring scholars in pursuing academic and professional excellence, facilitating impactful change within our field.Dr. Farid Breidi, Purdue University at West Lafayette (PPI) Dr. Farid
, reflectiveobservation, abstract conceptualization, and active experimentation, created by contextualdemands. Thus, ELT's implications for the course's design consisted of guiding learners throughrecursive processes of experiencing, reflecting, thinking, and acting to respond to the learningsituation. That is, "immediate or concrete experiences are the basis for observations andreflections. These reflections are assimilated and distilled into abstract concepts from which newimplications for action can be drawn. These implications can be actively tested and serve asguides in creating new experiences" [5]. Specifics of how ELT guided the course implementationare described in the section below.3. The CourseThe course titled Industrial IoT Implementation for Smart
aims to encourage continuousimprovement in engineering and technology education and ensure that graduates have thenecessary knowledge and skills to meet industry and society's evolving needs.ABET accreditation holds significant value for students, faculty, and programs, as it proves thatthe program has met rigorous standards and is dedicated to providing quality education.Accreditation by ABET also offers recognition and professional development opportunities forgraduates.2.4. Service LearningService learning is an educational method that blends community service with academicinstruction, reflection on the service experience, and connecting it to personal and social growth.Its aim is to offer students practical opportunities to use their
, students were asked to complete the modulesin class in a self-paced activity. This self-paced format seemed to be a good fit for studentsexploring standards, with one student saying: Personally, I really preferred this type of module for AM standards over the typical lectures. Not to say that technical standards and AM standards aren't important, but it would be difficult to fully learn and understand them by just sitting through lectures about them. I thought the reflections and case study were the best activities to have gone through in the modules. Showing how to find standards and then trying to apply them and give reasoning to where they can be used was a good exercise, and made the overall topic
program origin stories,” in ASEE annual conference & exposition, 2019.[3] Deloitte and The Manufacturing Institute, “2018 Manufacturing Skills Gap Study,” Deloitte United States. Accessed: Jul. 01, 2023. [Online]. Available: https://www2.deloitte.com/us/en/pages/manufacturing/articles/future-of-manufacturing- skills-gap-study.html[4] L. Avendano, J. Renteria, S. Kwon, and K. Hamdan, “Bringing equity to underserved communities through STEM education: implications for leadership development,” Journal of Educational Administration and History, vol. 51, no. 1, pp. 66–82, 2019.[5] D. Reider, K. Knestis, and J. Malyn-Smith, “Workforce education models for K-12 STEM education programs: Reflections on, and implications for, the
communications.Learners can access sims (i)-(iii) from anywhere with an internet connection and a standardcomputer to practice the process steps in a safe, repeatable, and effective manner.K7-8 Acculturation: Augmented Reality GamesOur most recent exploration of non-conventional learning tools includes the creation of an ARGgame [23] designed to introduce young-learners (8th grade focus) to the ray optics phenomena ofrefraction, total internal reflection, and light-guiding via straight and curved waveguidecomponents (see Fig. 8). The ARG has been designed as a miniature narrative, which a middle-school educator can independently deploy, instead of requiring specialized game designer staff tooversee. This purposeful ARG-in-a-box methodology is intended to enhance
manufacturing under guidance of Dr. Fidan. He also works as student manager of iMakerSpace Innovation lab at Tennessee Technological University. ©American Society for Engineering Education, 2024 Unique Instructional Delivery of Additive Manufacturing: A Holistic ReviewAbstractAdditive Manufacturing (AM), often referred to as 3D Printing (3DP), has emerged as atransformative technology compared to traditional manufacturing across industries such asaerospace, healthcare, and automotive. With this evolution, the demand for specialized educationand training in AM is growing. This brief concept paper provides a condensed review ofdistinctive instructional delivery methods in the field of AM, reflecting the dynamic nature
successful outcome.D. X-ray InspectionAfter the reflow soldering process, the PCB with all of the components is sent for an X-rayinspection test. This test is used to gauge the quality of the solder joints. During the test, x-rayspenetrate the silicon in IC packages and reflect off the metal joints, creating a grayscale imagedepicting metal in a darker hue. This image shows the precision of the solders and whether anydefects exist, such as open solder joints, misaligned parts, or lifted pins beneath the IC packets.The X-ray image of the PCB is then compared to a reference image to identify any differences.If any misalignments are discovered, the component is sent back for repair.MethodsA SimEvents model of PCB assembly process is designed and
criteria for accrediting engineering and engineering technologyprograms reflect the importance of standards competence for students. Specifically, the 2023-2024 Engineering Accreditation Commission (EAC) criterion 5d states, “The curriculum mustinclude a culminating major engineering design experience that 1) incorporates appropriateengineering standards and multiple constraints, and 2) is based on the knowledge and skillsacquired in earlier course work.” [1] Also, the Engineering Technology AccreditationCommission (ETAC) criterion 3 states student outcomes of “an ability to conduct standard tests,measurements, and experiments and to analyze and interpret the results” (3.A.4) and “an abilityto conduct standard tests, measurements, and experiments
more of the things that were positiveand do them even better.Future directions include implementation of the improvements above; development of newmodules focusing on interfacing other devices (such as robots); and development of modulesfocused on industrial applications of automated systems—such as manufacturing systems—tohelp learners see the big picture of how systems are integrated.AcknowledgementsThis material was supported by the National Science Foundation’s Improving UndergraduateSTEM Education (IUSE) Program (award no. 2044449). Any opinions, findings, andconclusions or recommendations expressed in this material are those of the authors and do notnecessarily reflect the views of the National Science Foundation.Bibliography[1] Giffi
components involves strategic utilization ofBlender and SolidWorks software. Blender's “. blend" file format seamlessly integrates into Unity'sassets for designing the fan. SolidWorks-generated components are reimagined in Blender forcompatibility with Unity as shown in Figure 2. The wind turbine model is sourced from the Unity3D Asset Store, providing a pre-built foundation [3].Within Unity 3D, the design process continues with the creation of essential elements, leveragingmesh colliders and scripting for user interaction as shown in Figures 3, 4, 5, and 6. The additionof reflections enhances visual appeal, contributing to a more immersive and realistic userexperience. The design process seamlessly integrates Blender, SolidWorks, and Unity 3D
to comprise anAdditive Manufacturing Skills sub-scale. The content reflects the specific skills identified in theproject design. Students respond using a 6-point Likert-type scale from 1 (Completely Uncertain)to 6 (Completely Certain).Cronbach's coefficient alpha was calculated to assess the internal consistency of each scale. TheEngineering Skills Self-Efficacy sub-scale values were good and consistent with those reportedin previous research. The value was borderline for the newly developed Additive ManufacturingSkills scale, suggesting that the number or content of the items may need to be reviewed.The means for all the scales were above the mid-point, suggesting that students had confidencein their abilities. As more data is collected in
studies to develop; 4) create more case studies; and 5) evaluate transfer oflearning by varying the sequence of operations in the case study.6. AcknowledgementsThis material was supported by the National Science Foundation’s Improving UndergraduateSTEM Education (IUSE) Program (award no. 2044449). Any opinions, findings, andconclusions or recommendations expressed in this material are those of the authors and do notnecessarily reflect the views of the National Science Foundation.References1. Hsieh, S. and Pedersen, S. “Design and evaluation of modules to teach PLC Interfacing Concepts,” Proceedings of the 2023 ASEE Annual Conference, June 25-28, 2023, Baltimore, MD.2. Hsi, S. and Agogino, A.M. “The impact and instructional benefit of using
bemulti-axis and must be completed in less than four hours including machine setup and cleanup.The designs created by the students are amazing – both in creativity and in challenge. A small setof the final projects are shown in Figure 8.Changing Curriculum Outcomes and Skills DevelopmentTo meet the changes brought on by incorporating the described technologies, the course outcomesfor MFGE 332 have evolved to suit. These are shown in Table 2. Notably, outcome 1 has beenchanged from “Generate programs for CNC machining using manual part programmingtechniques” to reflect the move away from manual programming to CAM programming. Inaddition, outcome 5 has been added to reflect the increased role that inspection plays in the courseto help students
theauthors and do not necessarily reflect the views of the National Science Foundation.References[1] B. Wang, C. Wu, L. Kang, G. Reniers, and L. Huang, "Work safety in China’s thirteenthfive-year plan period (2016–2020): status, new challenges, and future tasks," Saf. Sci., vol. 104,no. 4, pp. 164-178, 2018[2] "Chapter 5: Indicators for Monitoring Undergraduate STEM Education," National ResearchCouncil. [Online]. Available: https://nap.nationalacademies.org/read/6369/chapter/5.[3] International Energy Agency, "Energy Efficiency 2020: Industry," 2020. [Online]. Available:https://www.iea.org/reports/energy-efficiency-2020/industry.[4] Occupational Safety and Health Administration, "Personal Protective Equipment," OSHA,[Online]. Available: https
powermeasurements, and the NI 9211 can be integrated for thermocouples. The power and temperature,as well as the aforementioned force and vibration measurements, are desired for monitoring thefriction stir welding process.AcknowledgementThis work was supported by the NSF under Grant No.1818655 and Department of Engineering atVSU. Any opinions, findings, and conclusions or recommendations expressed in this material arethose of the author(s) and do not necessarily reflect the views of the NSF and VSU. The hard workfrom the VSU senior project group on “Design of a Monitoring System for ManufacturingProcesses” in 2021-2022 is thankfully acknowledged.Reference[1] Devarshi Shah, Jin Wang, Q. Peter He, Austin Hancock, Anthony Skjellum, “IoT
'zero' coordinates set.The spindle is moved to the test start position and the QC20-W is mounted between two kinematicmagnetic joints. A simple G02 and G03 command program is required to start the test. The“classic” test calls for the machine tool to perform two consecutive circles; one in a clockwisedirection, the other counter-clockwise. In practice there is an extra arc added before and after thetest circle to allow for the machine accelerating and then slowing down. By using extension barsthe test radius can be selected to reflect the size of the machine and the sensitivity to particularissues (e.g. large radius circles are better at highlighting machine geometry errors, smaller circlesare more sensitive to servo mismatch or lag). Figures 1
magicinteractions.2. Related ResearchThis section reviews previous research on active, online, and VR-based learning. We also analyzedifferent VR interaction methods. Our objective is to examine prior studies in related areas, analyzetheir findings, and compare our proposed research. Additionally, this section emphasizes variousinteraction methods used in previous studies and their impact on collaboration.2.1 Active LearningActive learning follows a constructivist approach and emphasizes student engagement and hands-on, collaborative activities. Constructivism proposes that people gain knowledge through practicerather than passive observation. This approach promotes self-reflection and helps students developthe essential skills needed for professional
reflect the views of the National Science Foundation.Bibliography[1] Zheng, P., Wang, H., Sang, Z, Zhong, R.Y., Liu, Y, Liu, C., Mubarok, K., Yu, S., and Xu, X., “Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives,” Frontier Mechanical Engineering, 2018, 13(2): 137–150[2] Industry 4.0, https://en.wikipedia.org/wiki/Industry_4.0, last accessed on 3/1/2020.[3] Manyika, J., Ramaswamy, S., Khanna, S., Sarrazin, H., Pinkus, G., Sethupathy, G. and Yaffe, A. Digital America: A tale of the haves and have-mores, McKinsey Global Institute Report. New York, 2015.[4] McLeman, A. (2014). Manufacturing skills gap: Training is the answer. Control Engineering, 61(10
power the four drone arms’ motor/electronic speed controller and three optional outlets3.3 Function Testing of PDBAfter the conceptual design in adopted, the next step towards developing this concept into aworking model is to test the function of PDB. The basic electric connectivity between the mainpower node and the utility (distribution) nodes was tested and verified to reflect the circuitdesign. Another important operational consideration is the heating of the board due the highcurrent it delivers from the battery to the motors- through the electronic speed controllers (ESC)-and other utilities. With guidance from the electrical engineering faculty mentor, student withmechanical engineering background set up a test to monitor the temperature