Logic Laboratory and Programming
notapplicable. Examples of these ratings are shown in Table 3. Students have not yet rated allcourses, as this rating exercise was only piloted on selected courses in Civil Engineering. Thenot applicable ratings were averaged into the scores as a zero. Students do vary their ratingssomewhat, although self-assessments of learning are of questionable value. The goal is for thestudent feedback to be used as a logic check on faculty claims in order to indicate potentialdisconnects. These areas will then be targeted for specific review of student work and/ordiscussions with the faculty on whether the learning objectives were being achieved. Becausecourse learning outcomes may vary when different instructors teach courses, reliableexpectations for the
and ACS Publications Division of the American Chemical Society.Faber, C., Vargas, P., & Benson, L. (n.d.). Measuring Engineering Epistemic Beliefs in Undergraduate Engineering Students.Ferguson, L. E., & Braten, I. (2013). Student profiles of knowledge and epistemic beliefs: Changes and relations to multiple-text comprehension. Learning and Instruction, 25, 49–61. http://doi.org/10.1016/j.learninstruc.2012.11.003Galloway, K. R., & Bretz, S. L. (2015a). Measuring meaningful learning in the undergraduate chemistry laboratory: a national, cross-sectional study. Journal of Chemical Education. Easton: American Chemical Society Division of Chemical Education.Galloway, K. R., & Bretz, S. L. (2015b). Using
traditionalrequired engineering calculus sequence as it offers a one-semester laboratory-based immersioninto the ways mathematical concepts—including trigonometry, vectors, derivatives, integrals,and differential equations—are actually used by engineers. Research from Wright State, as wellas other implementation sites, has robustly demonstrated that completing the WSM courseduring the first semester of college leads to boosts in retention rates and engineering persistence,desirable outcomes motivating nationwide replication [1]–[3].As administrators and instructors of the WSM course pilot at the University of Colorado Boulder(CU), we are interested in understanding the change processes wherein the WSM becomesinstitutionalized and integrated into the
Paper ID #28122Board 14: Materials Division: Measuring Student Learning of Crystal Struc-tures Using Computer-based VisualizationsDr. Susan P. Gentry, University of California, Davis Dr. Susan P. Gentry is an Assistant Professor of Teaching Materials Science and Engineering at the Uni- versity of California, Davis. In her current position at UC Davis, she is integrating computational modules into the undergraduate and graduate materials curriculum. She is specifically interested in students’ com- putational literacy and life-long learning of computational materials science tools. c American
Man- agement (BEEM) and the Executive Master in Technology Management (EMTM) Program at Stevens. He was the Editor of the ASEM Engineering Body of Knowledge (EM BoK) published in 2008. He was Special Editor of the EMJ issue on Green Economics. He won the Morton Distinguished Teaching Award for full professors at Stevens. John Wiley published his book, ”The Selection Process for Capital Projects”. Dr. Merino received two Centennial certificates from the ASEE in Engineering Economics and Engineering Management. He is past Chair of the Engineering Management Division and Engineering Economy Division of ASEE. Dr. Merino was awarded the ASEM and ASEE Bernard Sarchet Award. He is an ASEM and ASEE Fellow and past
State University. He serves on the advisory board of the Engineering Ambassador Network. With Melissa Marshall and Christine Haas, he teaches advanced presentation skills to Engineering Ambassadors in workshops across the country. Page 23.496.1 c American Society for Engineering Education, 2013 Engineering Ambassador Network: Establishment of Successful Engineering Ambassador Programs at Four UTC Partner UniversitiesThis paper presents an overview of the establishment of the Engineering AmbassadorProgram at four schools to begin the
Paper ID #10253An Inventory to Assess Students’ Knowledge of Second Law ConceptsDr. Timothy J. Jacobs, Texas A&M University Dr. Timothy J. Jacobs is an associate professor in the Department of Mechanical Engineering at Texas A&M University. His research interests include thermodynamics, internal combustion engines, and ped- agogical improvements to content and integration of design in engineering science courses. His teaching interests include thermodynamics, internal combustion engines, and experimental design.Dr. Jerald A. Caton, Texas A&M University
engineering coursework isintegrated with parallel courses and units that address culture, political, and other societal issues,then the overall experience exceeds what is typically learned on a “land-based” campus. Hence alecture on IP issues in China might be followed by visits to a Japanese firm consideringrelocating certain manufacturing process in that country. Teaching courses that address problemsbeyond engineering require different resources than would a manufacturing course that focusedonly on local companies. Finally, to best reinforce student learning, especially in a course thatfocuses on cross-cultural learning and experiences, it is necessary to have students reflect ontheir experiences. We summarize these reflections and their
concerns and family responsibilitiesas key factors affecting students’ mental well-being, with many students juggling multiple responsibilities alongsidetheir academic pursuits ([34]).Development of rPPG Technology In the development of rPPG technologies, significant challenges arise in real-time data acquisition and processing,particularly when integrating with systems like LLMs. One of the key challenges has been adapting rPPG algorithmsto work effectively across diverse demographics and in various environmental conditions, as traditional connectedPPG algorithms often focus on homogenous subject groups in stationary laboratory settings. Recent advancementsin rPPG have enhanced its accuracy and adaptability, particularly in varied environmental
that "Yes, now it feels like an F-80!" but some of their feedback pressure calibrations varied over a nearly ten to one range! Part of this was due to simulating the various center of gravity conditions and the pilot's setting of the simulated trim tabs. e.) DECISION: Since diversity of pilot opinion was part of what the Air Force Aeromedical Laboratory wanted to explore and quantify, they were pleased. We altered the simulator to make dial-in changes easier and then put it in a long test and/or modification program. Page 4.525.93 This was before the era of “OP-amps” (operational amplifiers
president of the Graduate Women in Engineering organization at Penn State University.Johnathan Vicente Johnathan P. Vicente is currently a Ph.D. student in Mechanical Engineering at Carnegie Mellon University. He earned his B.S. in Mechanical Engineering with a Minor in Sociology at Pennsylvania State University. While at Penn State, he performed research in the Engineering Cognitive Research Laboratory under Dr. Catherine Berdanier.Kanembe Shanachilubwa 4th-year doctoral student at Penn State University. Research interests include graduate attrition, persistence, and socialization.Catherine Berdanier Catherine G.P. Berdanier is an Assistant Professor of Mechanical Engineering at Pennsylvania State University and is the
Fundamentals of Science – a tool/fringe subject. Unusually she had a largenumber of applied scientists in her cohort.This argument about what the additional subjects should be has continued to the present day,particularly as it relates to instruction in the so-called ‘soft-skills’ required by industry. Theyare resented by many academic engineers and students on the grounds that they overloadcourses.Qu 6. Were students satisfied with the liberal studies they received?There was plenty of evidence then, as there is now, that students of technological studieshave more formal contact time in lectures and laboratories than students following otherdisciplines. It might have been expected, therefore, that the addition of subjects distant fromthe main
citationpractices belie a more complex system of relationships. Historically, they have established powerrelationships among authors, ideas, and larger sociotechnical systems within the university[26].Our citations reflect our reading practices while establishing field boundaries and contours andultimately funneling into the larger economy of the university. They undergird this universityeconomy in a number of ways: (a) we form communities of practice/discourse communities inhow we cite, excluding and including particular ways of knowing; (b) we give particular ideaspower and visibility in how we cite; (c) we decide whose work matters, who should be tenuredand promoted, who belongs; and (d) we teach ethics and intellectual property through citations.These
Paper ID #33812Longitudinal Qualitative Case Study of One Engineering Student’sPerceptions of Ethics and Social Responsibility: Corvin’s StoryDr. Stephanie Claussen, San Francisco State University Stephanie Claussen is an Assistant Professor in the School of Engineering at San Francisco State Univer- sity. Previously, she spent eight years as a Teaching Professor in the Engineering, Design, and Society Di- vision and the Electrical Engineering Department at the Colorado School of Mines. She obtained her B.S. in Electrical Engineering from the Massachusetts Institute of Technology in 2005 and her M.S. and Ph.D. from
Engineering at Stanford University. Besides teaching both undergraduate and graduate design and education related classes at Stanford University, she conducts research on engineering education and work-practices, and applied finite element analysis. From 1999-2008 she served as a Senior Scholar at the Carnegie Foundation for the Advancement of Teaching, leading the Foundation’s engineering study (as reported in Educating Engineers: Designing for the Future of the Field). In addition, in 2011 Dr. Sheppard was named as co-PI of a national NSF innovation center (Epicenter), and leads an NSF program at Stanford on summer research experiences for high school teachers. Her industry experiences includes engineering positions at
Paper ID #30807 Laboratory where his research applies approaches from mechanical testing, image analysis, mathematical and computational modeling, and device design to solve problems related to female pelvic health. He has secured funding from the NIH, DOD, NSF, and other sources to support these efforts. He is also co-director of 2 NSF sponsored programs focused on the success of underrepresented minorities and a national award winner (BMES 2019) for his work in diversity and inclusion.Dr. SYLVANUS N. WOSU, University of Pittsburgh Sylvanus Wosu is the Associate Dean for Diversity Affairs and Associate Professor of mechanical engi- neering and materials science at the University of Pittsburgh. Wosu’s research
methods. He teaches courses in water and wastewater treatment, solid and hazardous waste, surveying, and programming fundamentals.Dr. Vinu Unnikrishnan, West Texas A&M University Dr. Unnikrishnan is an Assistant Professor in the College of Engineering at the West Texas A&M Uni- versity. He was previously a faculty in the Department of Aerospace Engineering and Mechanics at the University of Alabama. He received his Ph.D. from Texas A&M University in 2007. Dr. Unnikrishnan’s research interests are in the development of multiscale methods for the mechanical and thermal charac- teristics of carbon-nanotube and polymeric based composite systems for use in advanced bio-medical and industrial applications. He has
University at Buffalo. As a former science educator, Monica is concerned with science, technology, engineering, and mathematics (STEM) teaching and learn- ing for historically and contemporarily marginalized students of color. Her research focuses on the role of identity, racialized experiences, and marginalization in K-12 and Higher education STEM spaces. Her work seems to challenge and problematize traditional notions of STEM teaching and learning and present solutions for marginalize groups to have accessDr. Ebony Omotola McGee, Vanderbilt University Ebony O. McGee is an Associate Professor of Diversity and Urban Schooling at Vanderbilt University’s Peabody College and a member of Scientific Careers Research and
Paper ID #242722018 CoNECD - The Collaborative Network for Engineering and ComputingDiversity Conference: Crystal City, Virginia Apr 29On Becoming a ”Transfer Institution”: Research on a Community Collegethat Supports Diverse Black Students in their Transfer AspirationsDr. Bruk T Berhane, University of Maryland, College Park Dr. Bruk T. Berhane received his bachelor’s degree in electrical engineering from the University of Mary- land in 2003, after which he was hired by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) where he worked on nanotechnology. In 2005 he left JHU/APL for a fellowship with the
School of Aerospace and Mechanical Engineering at the University of Oklahoma in Norman, Oklahoma. Prior to this position, he was the Associate Chair of the Woodruff School of Mechanical Engineering at Georgia Tech – Savannah. He was also the Founding Director of the Systems Realization Laboratory at Georgia Tech. Farrokh’s current research focus is model-based realization of complex systems by managing uncertainty and complexity. The key question he is investigating is what are the principles underlying rapid and robust concept exploration when the analysis models are incomplete and possibly inaccurate? His quest for answers to the key question are anchored in three projects, namely, Integrated Realization of
experience in structural engineering of building systems.Dr. Raymond A Pearson, Lehigh University Ray Pearson is the Interim Associate Dean of the P.C. Rossin College of Engineering and Applied Science at Lehigh University. Ray is also a professor in the Materials Science and Engineering Department and the Director of the Center for Polymer Science and Engineering. Ray actively teaches graduate courses in polymer science and engineering to on-campus and distance-ed students.Prof. John B Ochs, Lehigh University Professor John B. Ochs is the co-founder and director of Lehigh University’s engineering master’s de- gree program in technical entrepreneurship (www.lehigh.edu/innovate/). He joined the Lehigh faculty in 1979 as an
often work in laboratory settings –there are significant differences in the nature of their work and education. Pinelli explains thesedifferences in the work of engineers vs. scientists in great detail,3 but for our purposes whatmatters is how this plays out in terms of library use. As users, engineers behave differently thantheir peers in other disciplines. Many of them simply don’t use the library, physically orvirtually, and are unaware of library resources and services. Neither group is known to askreference questions in the traditional sense or request mediated searching. Tenopir states, “Evenwhen they do use a library, engineers like to search for information themselves rather than gothrough a librarian or other intermediary.”4
with an array of interdisciplinary design courses that range from introductory to capstone courses.Prof. Durga Suresh, Wentworth Institute of Technology Durga Suresh is an associate professor in the department of computer science and networking and has been teaching at WIT for over fifteen years, including courses in software engineering, databases, archi- tecture, and capstone projects. She has been involved in service-learning projects in urban Boston and has developed CS-outreach-oriented seminar classes in which college juniors and seniors develop and deploy CS curricula to middle school students. She has extensive experience with designing and teaching project based, multidisciplinary courses with collaboration
which is a major, but littlerecognized, challenge for engineering education. The use of computer assisted learning toprovide the required knowledge is already being promoted as an alternative. Clearly, thereis no need for a lecture if the same material is available by alternative methods and can beat a time and paced to suit an individual. Considering the effectiveness of such onlinelearning as the only metric, as educators are wont to do, is foolish. What will increasinglydrive adoption of automated learning platforms at all but the most elite institutions iseffectiveness vs. cost [26]. If there is no need for lectures, and laboratory work can besimulated, what is the purpose of a university other than as an aid to social mobility? Auniversity
professional skills regardless of which STEM career ischosen. Therefore, teachers need to not only teach standards that support STEM contentknowledge, they must also help students build professional skills.One of these professional skills that has been gaining more attention in K-12 education isargumentation11. Learning the process of argumentation helps the development of reasoning,critical thinking, communication, social behaviors, and information gathering skills. These skillsare necessary for daily life, professional activities, and all facets of education, which makesargumentation an important competency for students to engage in. Incorporating argumentationskills into curricula encourages students to become independent thinkers and problem
Engineer, Hindalco Industries, Dahej, India. Shift in-charge of daily smelter operations at primary Copper plant. 2000-2010: Research Assistant, New Jersey Institute of Technology (NJIT), Newark, NJ, USA. Fabricated and characterized High k dielectrics in semiconductors. 2004-2006: Graduate Teaching Assistant, New Jersey Institute of Technology (NJIT), Newark, NJ, USA. Taught applied physics lab to first year and second year students. 2010- 2013: Post- doctoral Fellow National Renewable Energy Laboratory (NREL), Golden Colorado, USA. Fabricated and characterized Photovoltaic/Solar cells and mentored graduate students. 2014-2016 (spring): Assistant Professor-College of Engineering and Technology, Northern New Mexico
visits; outcomes based accreditation would soon collapse for AACSB. Workingwith the Gang of Six, and with additional funds from NSF, Aldridge organized a series of 12regional workshops that engaged several hundred faculty members to learn the purposes andrequirements of EC 2000. Assembling faculty, not administrators, with a demonstrated interest inundergraduate teaching, Aldridge worked to develop a cadre of teaching faculty across differentinstitutions who understood and believed in outcomes assessment. These workshops were crucialto building on-the-ground interest and support for EC 2000 and outcomes assessment as a whole.It was also around this time that Gloria Rogers, an education specialist working with RoseHulman, got involved. Rogers
for youth in the form of internships at ayouth-staffed 3D print shop. The print shop opened in early 2017 as a “living laboratory” toprovide technical jobs to youth who completed Maker Foundations and are DHF Members. Theprint shop employs youth who are eligible to work through a state government minor workpermit and have completed the 14-week Maker Foundations program. Since opening, the printshop has employed 8 youth (4 female, 5 underrepresented minorities in STEM) between the agesof 15-18. The print shop offers 3D printing, 3D scanning, and 3D modeling services to clients.Six months after opening, the print shop youth employees have over 60 jobs and produced over4,000 objects. Example projects that youth completed include developing
• Wants to save the country Mechanical and • Focused on studying abroad in Germany Parker 2 Aerospace Engineering • Wants to help society colonize in space • Wants to coach or teach Ryan Textile Engineering 3 • Also wants to use his degree and make money • Enjoys gaining a variety of experiences Selyne Electrical Engineering 3 • Always wants to work on something newThemesThe results in this section include themes that emerged across the