model devices, systems, processes, or behaviors. 5.4 Apply an engineering design process to create effective and adaptable solutions. 6. Humanities and Social Sciences: Graduates apply concepts from the humanities and social sciences to understand and analyze the human condition. 7. Disciplinary Depth: Graduates integrate and apply knowledge and methodological approaches gained through in-depth study of an academic discipline. 7.4 Synthesize knowledge and concepts from across their chosen disciplines. 7.5 Contribute disciplinary knowledge and skills as a part of a collaborative effort engaging challenges that span multiple disciplines.The CES serves as a vital contributor to the institution reaching its APGs
research interests include structural dynamics, structural health monitoring, and undergraduate engineering education. He has received the Rose-Hulman Outstanding Teacher Award and the SAW Ralph R. Teetor Educational Award.Don Richards, Rose-Hulman Institute of Technology Don Richards is a Professor of Mechanical Engineering at the Rose-Hulman Institute of Technology. Don led the coordinated efforts to establish the integrated sophomore engineering curriculum at Rose-Hulman, authored the notepack used as the ES201 course textbook (course website: http://www.rose-hulman.edu/~richards/courses/es201/index.htm), and has been instrumental in establishing the Rose-Hulman Center for the
Paper ID #16262MAKER: Light-Up Star FloorMs. Stephanie Hladik, University of Calgary Stephanie Hladik is a M.Sc student in Electrical and Computer Engineering at the University of Calgary. Through her research she is exploring topics related to the integration of engineering into K-12 curricula. In particular, she is interested in bringing electrical engineering, programming, and the engineering design process into K-12 education. Aside from her research, Stephanie also participates regularly in outreach programs to promote STEM topics in classrooms and beyond.Ms. Emily Ann Marasco, University of Calgary Emily
Review of the Research,” Journal of Engineering Education, Vol. 93, No. 3, 2004, pp. 223-231.[2] Carlson, L.E., “First Year Engineering Projects: An Interdisciplinary, Hands-on Introduction to Engineering,” Proceedings of the ASEE Annual Conference and Exposition, pp. 2039-2043, 1995.[3] Aglan, H.A. and Ali, S.F., “Hands-on Experiences: An Integral Part of Engineering Curriculum Reform,” Journal of Engineering Education, Vol. 85, no. 4, pp. 327-330, Oct., 1996.[4] Regan, M. and Sheppard, S., “Interactive Multimedia Courseware and the Hands-on Learning Experience: An Assessment,” Journal of Engineering Education, pp. 123-131, April, 1996.[5] Catalano, G.D. and Tonso, K.L., “The Sunrayce ‘95 Idea: Adding Hands-on Design to an
measurements to determinesoil parameters. In all cases, abstract concepts were placed in the hands of students, whichgenerated an active learning environment. In other areas of engineering, Felder13, Unterweger14,and Estes15 documented their experiences with active learning exercises. In summary, most ofthese efforts were specific demonstrations that were incorporated for immediate impact, but theinstructors did not systematically incorporate a series of planned experiments nor did they fullyevaluate their impact on comprehension and retention of fundamental concepts, which is the goalof this study. Geotechnical Concept Tools (GCT) have been developed as part of the research initiativeinvolving a course curriculum improvement effort for a
in conjunction with AugSTEM teammembers. Bringing various stakeholders together and convening at the two-year campus wasparticularly valuable for program evaluation.1. Knowledge Generation MethodsIn addition to ongoing formative and summative evaluation described above, our projectincluded a research component to generate knowledge about the lived experience of STEMstudents, influences related to social identity and institutional characteristics that contribute topersistence in an urban liberal arts college.2.1 Conceptual Frameworks Our qualitative research was guided by two overall conceptual frameworks, one from highereducation and one from social work. First, we drew on Nora’s student integration model [10],which views students as moving
that row or column is pressed and a logical “low” otherwise. The project is focusedon the design of the filter stages, using both Laplace analysis and convolution to demonstrate anunderstanding of the frequency response of circuits. The students must not only design, buildand test their filters, but also model and analyze the circuit using MATLAB. Elements of theproject, such as the design of an individual filter stage or the use of MATLAB to performconvolution, are integrated into laboratory exercises during the semester. The digital portion ofthe design connects this course with the introductory digital logic course that the students takeconcurrently. This project also introduces students to peak detectors and comparators, whichrelates the
Entrepreneurship Education in a University Context. Int. J. Entrepreneurship and Small Business, Vol. 5, No. 1, pp. 45-63.[8] Clase, K. L. (2007). Promoting Creativity and Innovation in an Entrepreneurial Certificate Program through Science and Technology. The Technology Interface, Fall 2007, pp. 1-11.[9] Tidd, J., and Bessant, J. (2009). Managing Innovation: Integrating Technological, Market and Organizational Change. John Wiley, Fourth Edition, England.[10] Anderson, D. M. (2008). Design for Manufacturability and Concurrent Engineering. CIM Press, California.[11] Boothroyd, G., Dewhurst, P., and Knight, W. (2002). Product Design for Manufacture and Assembly. Taylor and Francis Group, Second Edition, New York.[12] Dorf
Internal Combustion Engine Laboratory 5 Yes YesProjects tend to fall into a number of categories. Certain courses in the curriculum did notinitially have a lab component connected to them. Projects 3,4,7,8, and 11 in Table 3 fall into thiscategory. The Internal Combustion Engine course originally had no hands on components. Theprofessor who teaches this course also advises capstone design teams, and thus was in a uniqueposition to champion a series of projects that would directly benefit his course. This course hadvery little physical space that could be dedicated to lab equipment. This is also an electivecourse, with a maximum of 30 students per offering, which means that there was not a lot ofinstitutional
assessments across the engineering, market- ing, finance and manufacturing domains. Prior to this, he held positions in New Product Development at Ford Motor Company and Onsrud Cutter. He currently serves as lead instructor for the Baylor En- gineering Capstone Design program and teaches additional courses in the areas of Engineering Design, Technology Entrepreneurship, and Professional Development. Mr. Donndelinger has published three book chapters in addition to 30 articles in peer-reviewed journals and conference proceedings and has been awarded two United States patents. Mr. Donndelinger earned an M.S. in Industrial Engineering and a B.S. in Mechanical Engineering from the University of Illinois at Urbana-Champaign.Mr
inacademia was a concern that was brought up by multiple participants. More specifically, theparticipants noted that there are inconsistencies in what credits transfer from military experienceinto an engineering curriculum. A couple of the assets that were brought up during the sessionincluded, “vet populations are diverse and understand diversity,” and that student veterans are“very task-oriented compared to peers.”Funding. Another concern for SVEs surrounds funding. Some of the participants brought up the“lack of transparent alternate funding,” and “only 36 months of funding (initially)”. Oneparticipant brought up “GI Bill Logistics” as a barrier to academic success for SVEs. Thiscomment sits in juxtaposition with the comments noting VA
engagement, and the societal impact of engineering infrastructure.Mr. Siddhartha Roy, Virginia Polytechnic Institute and State University Siddhartha Roy is a PhD student in Civil & Environmental Engineering at Virginia Tech. His research focuses on factors leading to failures in drinking water infrastructures; in particular, erosion corrosion of copper pipes in hot water systems. His advisor is Dr. Marc Edwards.Dr. Jeremi S. London, Virginia Polytechnic Institute and State University Dr. Jeremi London is an Assistant Professor in the Engineering Education Department at Virginia Poly- technic Institute and State University. London is a mixed methods researcher with interests in research impact, cyberlearning, and
time this course will beoffered.Project ObjectiveThe UW College of Engineering funded development of a series of distance-learning courses tosupport its Engineering Co-op Program and make it easier for chemical engineers to participate.Students, potential employers, and our faculty agree that co-op can be a valuable part of anengineer’s education. Students may accept a summer-only assignment or they may extend theirtime-to-degree by working on a co-op assignment during the academic year.The HTOL course was designed to resolve the problem that few students in the Department ofChemical Engineering participated in the engineering co-op program because it hinderedprogress through the department’s curriculum. Some required courses are offered only
theundergraduate engineering curriculum are: (1) an authentic performance task in the form of ascenario and prompts to elicit the ABET professional skills; (2) establishment of initial reliabilityand validity of the measurement instrument – the Engineering Professional Skills Rubric (EPSRubric) (Appendix A); and (3) a dedicated community of 40+ engineering faculty using directassessment to evaluate the efficacy of their own programs, and to plan and implementimprovement at both course and program levels.The EPSA method is a discussion-based performance task designed to elicit students’ knowledgeand application of the ABET professional skills. In a 45-minute session, small groups of studentsare presented with a complex, real-world scenario that includes
from allthat is available is problematic. Similar to our counterparts in the industry, educators must selectsoftware which satisfies a number of often competing requirements. Our software acquisitionsmust compliment the curriculum, integrate with the technical capacity of the institution, andprovide sufficient challenge to students, all the while reflecting current industry standards. Weare thus presented with a shared dilemma: how do both educators and industry decide whichsoftware application(s) to acquire?Software acquisition and adaptation decisions often involve comparing alternatives of severalcriteria. However, the end users of the software systems may not necessarily be familiar with theoverall decision-making criteria. To address this
to achieve an experience that enhances their qualityknowledge and skills during their capstone projects. As Wm. A. Wulf, president of the NationalAcademy of Engineering (NAE), has noted, for the United States to remain competitive in a globaltechnological society, the country as a whole must take serious steps to ensure that we have adiverse, well trained, and multicultural workforce [2]. To support undergraduate minority studentsenrolled in STEM fields, TAMUK promotes the Senior Design / Capstone Mini-Grant (SDMG) tosenior students developing capstone projects as an integral part of their course program to completeits academic degree. The SDMG activity has an objective to help participants improving the seniordesign/capstone project
concepts to studentsin the electrical engineering major. The course is unique in the following ways: it is modular instructure; computational nanotechnology has been made an integral part of the course; itprovides hands-on experience with real samples and equipment; High Performance ComputingCluster (HPCC) has been used for modeling and simulation. It was followed by a designprojects course in which students designed and implemented a nanoelectronic device. Wedeveloped the Nanoelectronics Concept Inventory (NCI) to assess student learning offundamental concepts in the first course. The assessment can be used to improve and enhancepedagogical techniques employed. The assessment can be supplemented by the observation ofstudent performance during the
,learning and communications that are not found in conventional U.K full-time under-graduateprogrammes. These teaching methods range from text-based to internet-based delivery and havea strong emphasis on employment-based project work.The undergraduate course provides a ‘mainstream’ first degree in chemical engineering forindustry-based students who have some prior qualifications and experience. The postgraduatemasters-level courses are designed for a wider range of professionals with backgrounds inengineering and/or chemistry. They provide a technology-based version of an MBA and featurea strong multi-disciplinary theme that integrates advanced process technologies, managementand business (with a strong emphasis on the process of innovation) and
. Ressler P.E., United States Military Academy Stephen Ressler, P.E. Ph.D., Dist.M.ASCE, F.ASEE is Professor Emeritus from the U.S. Military Academy (USMA) at West Point. He earned a B.S. degree from USMA in 1979, a Master of Science in Civil En- gineering from Lehigh University in 1989, and a Ph.D. from Lehigh in 1991. As an active duty Army officer, he served for 34 years in a variety of military engineering assignments around the world. He served as a member of the USMA faculty for 21 years, including six years as Professor and Head of the Department of Civil and Mechanical Engineering. He retired as a Brigadier General in 2013. He is a registered Professional Engineer in Virginia, a Distinguished Member of
state of Illinois. In the Innovate Now: Report on Innovation, Pistrui provided a series ofrecommendations for educators to employ to build the Metro Chicago and state of Illinois talentpool [18]. Table 9 provides an overview of the recommendations from the report. Table 9 - What Universities and Community Colleges Can Do BetterThe following seven-point action plan to support the development of entrepreneurship and theinnovation talent pool: 1. Make entrepreneurship and innovation education a priority on every campus. 2. Develop and support a group of “innovation champions.” 3. Demand cross curriculum and interdisciplinary collaboration between students, faculty, universities and industry. 4. Invest in educating and
power engineering elective courses.However, at many universities the field of power engineering is seen as a mature field with noexciting problems to solve or work on in the 21st century.This paper and presentation will outline a joint effort between Mississippi State University andSchweitzer Engineering Laboratories (SEL) to develop several demonstrations for introductoryEE courses and laboratories for the first power engineering course using a microprocessorcontrolled relay set-up. The goal of the project is to provide other universities with a set ofdemonstrations and laboratories to help integrate other electrical engineering concepts into thepower curriculum to show students that power really involves many areas of core
and teaching thecourse since they likely took a course with similar content in their academic preparation giventhat the content largely remains the same.The authors aim to extend this investigation and attempt to correlate the findings of the facultysurvey with what the construction industry considers as “static” and “dynamic” courses, andevaluate what industry professionals perceive as topics that need constant update, and whattopics require the teaching of the fundamentals alone. The results can be used to evaluate thestatic/dynamic nature of an academic program as a whole.References1. Hartman, J.C. Engineering economy: suggestions to update a stagnant course curriculum. in Proceedings of the 1998 Annual ASEE Conference, June 28
of novice teachers’ epistemological framing ofengineering learning and teaching. The inclusion of engineering design at all grade levels in theNext Generation Science Standards calls for efforts to create learning opportunities for teachersto learn to teach engineering. In our research on the role of engineering in elementary teacherpreparation, we ask, what learning goals do new elementary teachers take up when asked to doengineering design themselves, and what learning goals do they establish when setting upengineering design tasks for students?We conducted an interpretive comparative case study with two purposefully selected cases,chosen to unpack contrasting epistemological framing of engineering. Ana and Ben participatedin the same
the Development of Metacognition in Engineering Students in a Problem-Based Learning Program with a Think-Aloud ProtocolThis evidence-based practice paper focuses on how an engineering education program thatpromotes self-regulated learning impacts students’ problem-solving skills. Iron RangeEngineering (IRE) is an innovative, problem-based-learning (PBL) engineering program inVirginia, Minnesota. Throughout the curriculum of this program, students learn about and applymetacognitive skills necessary for self-regulating their learning. For the past several years, wehave been conducting research funded by the National Science Foundation1 to (1) identify themetacognitive skills inherent in self-regulated
institutions, such as applying educational theories in acourse design [13], implementing an intervention [14], [15], [16], and redesigning a streamlineof curriculums [17], [18], [19]. There is a lack of comprehensive, evidence-based researchdepicting the overall experiences of sophomore engineering students and how these experiencesinfluence retention and other academic success indicators.In reviewing the literature, we found Tinto’s Model of Student Departure offers a valuabletheoretical lens for examining the sophomore experiences of engineering students and theirimpact on students’ decision to drop out vs. persist [20], [21] (Appendix A). This model positsthat student retention is influenced by the interplay of academic and social integration
sensor is a laser trimmed thermoset polymer capacitive sensing element with on-chipintegrated signal conditioning. As the relative humidity level changes, so does the capacitivevalue. This is translated into a change in the voltage output of the sensor.Air and Refrigerant Flowrates MeasurementsAir and refrigerant flowrates are measured, respectively; at location 8 and location 5 (refer to Fig. 1and Table). The air flow sensor is the DAM1, which is an integral vane anemometer. This deviceincludes a digital display unit. The refrigerant flow sensor is the Gems FT110 which is a turbineflow rate sensor. A separate display is used to view the resulting data.V. Interface and Control SystemFigure 3 illustrates how the data acquisition board is
Paper ID #8664Development of On-Line Lecture and Preparation Resources for ElectricalEngineering Laboratory CoursesDr. Susan C. Schneider, Marquette University Susan Schneider is an Associate Professor in the Department of Electrical and Computer Engineering at Marquette University, Milwaukee, WI. She is also the Director of Undergraduate Laboratories for the Electrical Engineering program. Dr. Schneider is a member of ASEE, the IEEE, Sigma Xi and Eta Kappa Nu.Dr. James E. Richie, Marquette University James Richie received his Ph.D. degree from the University of Pennsylvania in 1988. He is presently associate professor
highlight student skills development in ways that engage and attract individuals towards STEAM and STEM fields by showcasing how those skills impact the current project in real-world ways that people can understand and be involved in. As part of a university that is focused on supporting the 21st century student demographic he continues to innovate and research on how we can design new methods of learning to educate both our students and communities on how STEM and STEAM make up a large part of that vision and our future.Mr. Hugo Gomez, University of Texas, El Paso Mr. Hugo Gomez works as an Instructional Technologist at the University of Texas at El Paso, he is focused on expanding the professional and technical skill
engineering and technology students.For example, the following constitute a sample of effective practice furthering our students’propensity for, and capability with, technological innovation:Phase 1 Ideation: In an introductory freshman class using creative brainstorming of howtechnological problems are addressed differently in various regions of the world.Phase 2 Development: Implementing a vertically integrated capstone project that teams studentsfrom each year of the baccalaureate program on an industry-based problem. Senior studentsmentor junior ones to develop advanced skills.Phase 3 Realization: Students work with entrepreneurs, for example in the university’stechnology park or incubator, in implementing an innovationInteraction with Context
“a holistic approach to education, conservation, and community development that uses the local community as an integrating content for learning at all ages” (p 83) Proceedings of the 2011 Midwest Section Conference of the American Society for Engineering Education 3 In project-based learning, there are several variations ranging from teacher-controlled to student-controlled methods; see Table 3.Table 3. Variations of Project-Based Learning* Type of Project Guidelines 1. Teacher-controlled: part of curriculum unit