AC 2012-5599: BEST PAPER PIC IV: THE USE OF INQUIRY-BASED AC-TIVITIES TO REPAIR STUDENT MISCONCEPTIONS RELATED TO HEAT,ENERGY, AND TEMPERATUREDr. Michael J. Prince, Bucknell University Page 25.256.1 c American Society for Engineering Education, 2012AC 2011-407: THE USE OF INQUIRY-BASED ACTIVITIES TO REPAIRSTUDENT MISCONCEPTIONS RELATED TO HEAT, ENERGY AND TEM-PERATUREMichael J. Prince, Bucknell University Michael Prince is Professor of Chemical Engineering at Bucknell University. His current research ex- amines the use of inquiry-based activities to repair student misconceptions in thermodynamics and heat transfer. He is
representation of female, minority and other underrepresented groups in mathematics, science and engi- neering. c American Society for Engineering Education, 2019 2017 Pacific Southwest SectionMeeting: Tempe, Arizona Apr 20 Paper ID #20655Strengthening Community College Engineering Programs through Alterna-tive Learning Strategies: Developing an Online Engineering Graphics CourseDr. Amelito G Enriquez, Canada College Amelito Enriquez is a professor of Engineering and Mathematics at Ca˜nada College in Redwood City, CA. He received a BS in Geodetic Engineering from the
Paper ID #23162Motivational Factors of Undergraduate Engineering Students in Introduc-tory Non-technical CoursesDr. YunJeong Chang, University of Virginia Dr. YunJeong (Eunice) Chang is a Research Scientist at the University of Virginia. She earned her PhD in Learning, Design, and Technology program from the University of Georgia. Her research interests involves supporting teaching and learning in higher education and designing online or blended learner- centered learning environments within STEM context.Dr. Rider W. Foley, University of Virginia Dr. Rider W. Foley is an assistant professor in the science, technology &
questions are related to those objectives.Research QuestionsRQ1: What challenges have educators encountered or perceived when teaching engineeringand computing students about ethics and the societal impacts of engineering andtechnology?RQ2: For educators who did not face any challenges, what circumstances or strategiesallowed them to effectively integrate ethics and societal impacts of engineering andtechnology into their courses, programs, and/or co-curricular activities?MethodsData CollectionThe research presented in this paper is situated within a larger study with broad goals relatedto exploring the ESI education of engineering and computing students. The first phase of thestudy involved the development and dissemination of online surveys to
Columbia University and a dual BS degree in Statistics and Computer Science at Peking University. c American Society for Engineering Education, 2018 Development of a Survey Instrument to Evaluate Student Systems Engineering AbilitySystems engineering skills are difficult to teach in a university setting. As a result, new graduatesmay require significant on-the-job-training and experience before they and their employers areconfident in their systems engineering skills. For example, NASA developed the SystemsEngineering Leadership Development Program (SELDP) to provide “development activities,training, and education” to more quickly cultivate systems engineers. We need
. Sheppard, Ph.D., P.E., is professor of Mechanical Engineering at Stanford University. Besides teaching both undergraduate and graduate design and education related classes at Stanford University, she conducts research on engineering education and work-practices, and applied finite element analysis. From 1999-2008 she served as a Senior Scholar at the Carnegie Foundation for the Advancement of Teaching, leading the Foundation’s engineering study (as reported in Educating Engineers: Designing for the Future of the Field). In addition, in 2011 Dr. Sheppard was named as co-PI of a national NSF innovation center (Epicenter), and leads an NSF program at Stanford on summer research experiences for high school teachers. Her
technical lead for Big Data Analytic and Visualization, and Surrogate Modeling efforts in conjunction with the U.S. Army Engineer Research and Development Center (ERDC). Over the past 4 years, Dr. Hamilton have been leading the efforts for developing immersive virtual environments for conducting data analyzes of tradespace data sets. The immersive data visualization systems allows stakeholders the ability to visualize the tradespace options, subset the data, and work in collaboration with other analysts within the same vir- tual environment. Other research interest includes using virtual reality for enhancing classroom education in engineering programs. c American Society for Engineering
*** 0.066 ***Active in an engineering club/ student chapter of a professional society 0.048 ** -0.006Active in other engineering- related clubs or programs for women and/or minority students 0.089 *** 0.051 ***Active in other clubs or activities (hobbies, civic or church orgs, student government, etc.) 0.061 *** 0.033 *# of weeks at study abroad/ on an international, school- related tour 0.012 0.014# of weeks on humanitarian engineering projects (Engineers Without Borders, etc
can instantly present the user with rich media (text, audio, images and video),opening new opportunities for “just-in-time” learning especially as one part of a blendededucation program that may combine other components using face-to-face and web instruction.Just-in-time learning is thought to encourage high level learning since the learner can access andapply the information right away rather than first learning the information and then apply it at alater time.3Education and training for busy, working engineers requires convenience, portability, low cost,and, at times, just-in-time knowledge. This population represents one example where trainingpartially using cell phones is germane. Working engineers often have little time to break awayfrom
Paper ID #23301Peer Review and Reflection in Engineering Labs: Writing to Learn and Learn-ing to WriteDr. Vanessa Svihla, University of New Mexico Dr. Vanessa Svihla is a learning scientist and assistant professor at the University of New Mexico in the Organization, Information & Learning Sciences program, and in the Chemical & Biological Engineering Department. She served as Co-PI on an NSF RET Grant and a USDA NIFA grant, and is currently co-PI on three NSF-funded projects in engineering and computer science education, including a Revolutioniz- ing Engineering Departments project. She was selected as a
perspectives of anthropology, cultural psychology, and the learning sciences. Through in-situ studies of classroom and institutional practice, Chandra focuses on the role of culture in science learn- ing and educational change. Chandra pursues projects that have high potential for leveraging sustainable change in undergraduate STEM programs and makes these struggles for change a direct focus of her research efforts.Dr. Ayush Gupta, University of Maryland, College Park Ayush Gupta is Assistant Research Professor in Physics and Keystone Instructor in the A. J. Clark School of Engineering at the University of Maryland. Broadly speaking he is interested in modeling learning and reasoning processes. In particular, he is
consistsof a semester-long biweekly professional development series. Each of the eight sessions of thePD program consists of a workshop focused on a different topic related to active learning andinclusion in the classroom.The IUSE project utilizes a “train the trainer” model to disseminate information. For the firstyear of the project pairs of faculty members were recruited from four engineering disciplines.The following semester, these pairs of faculty members became Disciplinary Leader Pairs(DLPs) who delivered workshop materials to next group of faculty members from their owndiscipline. After that, the DLPs facilitated communities of practice (CoPs) during the followingsemester with their discipline-based faculty. This process was repeated with a
engineering program? • Does students’ journey between the stages of learning (acclimation, competency, and proficiency) improve along the engineering curriculum? • Is there a correlation between the interest and the development of the knowledge and strategic processing components?Research MethodologyAssessment InstrumentThe assessment instrument includes 31 questions that are either in multiple choice or Likert scaleform. The first five questions are related to demographic information of the group. This allowscharacterizing the population based on gender, ethnic background and engineering disciplines.The next 18 questions include ethics concepts and short descriptions of situations involving ethicalissues (i.e., very short cases
Paper ID #281062018 Best Zone II Paper: Comparison of Student and Faculty Perceptions ofIntent and Effectiveness of Course Evaluations in an Engineering Curricu-lumDr. Thomas P. James P.E., Rose-Hulman Institute of Technology Tom James is presently a Professor of Entrepreneurship at Rose-Hulman Institute of Technology. His major interests are new product development and global business ventures. He currently teaches courses in accounting, finance, and entrepreneurial studies. In addition to teaching, Dr. James directs the ES- CALATE program, a living-learning community focused on integrating entrepreneurship and technical
Paper ID #356612020 BEST ZONE III PAPER WINNER - Supplemental Instruction andJust-in-Time Tutoring: The Who, When, and Why Students Attend in aFirst-Year Engineering CourseDr. David Joseph Ewing, The University of Texas at Arlington Earned a Bachelor of Science degree in Mechanical Engineering from Pensacola Christian College and a PhD in Mechanical Engineering from Clemson University. He spent several years teaching in a first year engineering program at Clemson University. He is now a Assistant Professor of Instruction at the University of Texas at Arlington, where he continues to teach first year engineering courses
Background LiteratureService Learning and Service-Oriented Projects. Service learning as defined by the NationalService Learning Clearinghouse15 is “a teaching and learning strategy that integrates meaningfulcommunity service with instruction and reflection to enrich the learning experience, teach civicresponsibility, and strengthen communities.” Building from this definition, we can identifyspecific elements of service learning which are identified in the book Service Learning:Engineering in your Community9 as possessing the following elements related to engineering: • Service: Service to an underserved area or people. This can be direct, and ongoing, or project-based, involve hands-on aspects or research and analysis. • Academic
Research Center for Wireless Integrated MicroSystems (WIMS ERC)) [8]. Aprior study of the Rosetta Commons, a multi-campus computational biology REU, found itmatched outcomes for community, scientific identity, scientific self-efficacy, and intention topursue a science research-related career when compared to two single-campus life sciences REUprograms [7]. While this result is promising, a general knowledge gap remains regarding bestpractices for implementing multi-campus Sites and comprehensive evaluation of how theiroutcomes compare to those of traditional, single-institution programs.This paper describes a multi-campus REU program run across the four partner campuses withinthe NSF Engineering Research Center (ERC) for Re-inventing the Nation’s
have been implemented with varying perceptions of efficacy [6].Engineering ethics and societal impacts (ESI) integration strategies include ethics across thecurriculum (intentional distribution of content throughout the engineering coursework),standalone ESI-related courses (required or elective), and modules in technical courses. Thebreadth of these options is represented in the National Academy of Engineering compilation ofexemplary educational activities and programs for the ethical development of engineers [7]. The25 highlighted settings covered a range of topics (not all related to both ethics and societalimpacts) and included undergraduate courses, graduate courses, and multiyear programs. Thereport identified elements characteristic of
programming has beenshown to enhance learning and community (e.g., McDowell et al.14). Team testing can augment aclass using team programming or provide similar benefits when used alone.Feedback is generally considered important in learning and there is a growing body of work (andtechnology*) related to providing fast feedback (e.g., Chen et al.2 and Mehta3). Unfortunately, notmuch, if anything, has been published on the use of discussion as a fast feedback mechanism orthe return speed of graded exams and assignments. However, structured discussion with peers isa well-known method for increasing engagement and enhancing learning.15,16 Psychologyresearch has shown that reinforcement, through punishment and/or rewards, is important tolearning and that
pollution, other combustion- related topics, and engineering education pedagogy. He is the author of three student-centered textbooks in combustion and thermal-sciences. He is a Fellow of the ASME and was the recipient of ASEE’s Mechanical Engineering Division Ralph Coats Roe Award in 2009.Peggy Noel Van Meter, Pennsyvlania State University Dr. Van Meter is an Association Professor in the Educational Psychology program at the Pennsylvania State University. She teaches graduate courses on Learning Theory as well as Concept Learning and Prob- lem Solving. Her program of research focuses on students’ learning and problem solving with tasks that involve multiple nonverbal representations and text. She has recently